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Kapitel 1

Gruppen und Halbgruppen

Aufgabe 1: Kürzbarkeit in Halbgruppen

Sei H eine Halbgruppe. Ein Element x ∈ H heißt linkskürzbar (rechtskürzbar), wenn für
alle a, b ∈ H gilt: Aus xa = xb (ax = bx) folgt a = b. x heißt kürzbar, wenn x links-
und rechtskürzbar ist. Man sagt, in H gilt die Kürzungsregel, wenn jedes Element von H
kürzbar ist. Zeigen Sie:

a) In jeder Gruppe G gilt die Kürzungsregel.

b) H ist Gruppe genau dann, wenn H ein linksneutrales Element e besitzt und wenn es
für jedes x ∈ H ein x′ ∈ H gibt mit x′x = e.

c) Sei H eine endliche Halbgruppe. H besitzt genau dann ein linksneutrales (rechtsneu-
trales, neutrales) Element, wenn H ein linkskürzbares (rechtskürzbares, kürzbares)
Element besitzt.

d) Eine endliche Halbgruppe H ist genau dann eine Gruppe, wenn in H die Kürzungsregel
gilt.

Hinweis: Für x ∈ H betrachte man die durch h 7→ xh bzw. h 7→ hx für alle h ∈ H gegebenen Abbildungen

λx, ρx : H → H (Linkstranslation, Rechtstranslation mit x) und beachte, dass x genau dann linkskürzbar

bzw. rechtskürzbar ist, wenn λx bzw. ρx injektiv ist.
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Kapitel 2

Körper

Aufgabe 2: Körper mit 2 und 3 Elementen

Bestimmen Sie alle Körper mit 2 und 3 Elementen.
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Kapitel 3

Restklassen

Aufgabe 3: Division mit Rest

Sei n ∈ Z, n 6= 0. Zeigen Sie, dass es für jedes m ∈ Z eindeutig durch m bestimmte q, r ∈ Z

gibt mit
m = qn+ r und 0 ≤ r < |n|.

q heißt partieller Quotient und r Rest der Division von m durch n. Mitunter bezeichnet
man diesen Rest r mit rn(m).

Aufgabe 4: Division mit Rest II

Sei n ∈ Z. Für m ∈ Z setzen wir:

rn(m) :=

{

m wenn n = 0

r wenn n 6= 0
,

wobei r im Fall n 6= 0 die eindeutig bestimmte ganze Zahl ist mit 0 ≤ r < |n| und
m = qn+ r für geeignetes q ∈ Z, (siehe „Division mit Rest I“).

Zeigen Sie:

a) Für a, b ∈ Z gilt rn(a) = rn(b) genau dann, wenn n|a− b.

b) Für alle a, b ∈ Z gilt

rn(a+ b) = rn(rn(a) + b) = rn(a+ rn(b)) = rn(rn(a) + rn(b)) und

rn(a · b) = rn(rn(a) · b) = rn(a · rn(b)) = rn(rn(a) · rn(b)).

c) Die Relation „a ≡ b⇐⇒ rn(a) = rn(b)“ ist eine Äquivalenzrelation über Z. Die dazuge-
hörigen Äquivalentklassen heißen auch Restklassen modulo n.
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Aufgabe 5: Division mit Rest III

Für n ∈ N setzen wir

Ln :=

{

Z n = 0

{0, 1, . . . , |n| − 1} n 6= 0

und definieren zweistellige Operationen ⊕n und ⊙n auf Ln, indem wir für alle a, b ∈ Ln

setzen (siehe Division mit Rest II)

a⊕n b := rn(a+ b) und a⊙n b := rn(a · b).

(Da offensichtlich Ln = L−n, ⊕n = ⊕−n und ⊙n = ⊙−n, kann man sich bei den nachfol-
genden Überlegungen auf den Fall n ∈ N beschränken.)

Zeigen Sie:

a) (Ln,⊕n,⊙n) ist für alle n ∈ Z ein kommutativer Ring mit Einselement.

b) Ln ist genau dann ein Körper, wenn n Primelement ist.

Bemerkung: Statt ⊕n und ⊙n schreibt man kurz + und ·.



Kapitel 4

Ringe

4.1 C(R)

Aufgabe 6: Definition und Eigenschaften von C(R)

Sei R ein Ring. In R2 = R×R führen wir zwei zweistellige Operationen + und · ein, indem
wir für alle (r1, r2), (s1, s2) ∈ R×R setzen

(r1, r2) + (s1, s2) := (r1 + s1, r2 + s2) und

(r1, r2) · (s1, s2) := (r1s1 − r2s2, r1s2 + r2s1).

Zeigen Sie:

1. (R2,+, ·) ein Ring ist, der genau dann kommutativ ist, wenn R es ist. Man bezeichnet
ihn mit C(R).

2. C(R) besitzt ein Einselement genau dann, wenn R ein Einselement besitzt.

3. Identifiziert man x ∈ R mit (x, 0R) ∈ C(R), so ist R Unterring von C(R). (Damit
darf man z. B. 0C(R) = 0R setzen usw.)

4. Sei R kommutativ. Definiert man für u := (a, b) ∈ C(R) die Norm von u durch
R ∋ N(u) := a2 + b2 (= (a, b)(a,−b) wegen der in c) definierten Identifizierung), so
gilt N(uv) = N(u)N(v) für alle u, v ∈ C(R).

5. Sei R kommutativ. Für u ∈ C(R) gilt u ∈ C(R)∗ genau dann, wenn N(u) ∈ R∗a.

6. Sei R kommutativ. Die folgenden Bedingungen sind äquivalent:

(i) C(R) ist Integritätsring (Körper)

(ii) R ist Integritätsring (Körper) und N(u) 6= 0R für alle u ∈ C(R) \ {0R}
(iii) N(u) 6= 0R (N(u) ∈ R∗) für alle u ∈ C(R) \ {0R}.

aFür einen Ring R bezeichnet R∗ die Teilmenge der bezüglich der Multiplikation invertierbaren Elemente
von R
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4.2 Homomorphismen

Aufgabe 7: Spurhomomorphismus

Sei R ein kommutativer Ring mit Einselement und n ∈ N+. Ist f : Rn,n → R ein R-
Homomorphismus mit f(AB) = f(BA) für alle A,B ∈ Rn,n, so gibt es ein r ∈ R mit
f = r · spur (d. h. f(A) = r spurA für alle A ∈ Rn,n).

4.3 Ideale

Aufgabe 8: Ideale in Z

Eine Teilmenge I von Z heißt Ideal von Z, wenn I 6= ∅ und wenn für alle a ∈ Z und alle
x, y ∈ I gilt ax, x+ y ∈ I.

Z. B. sind {0} und Z Ideale von Z. {0} wird Nullideal genannt und oft kurz mit O
bezeichnet. Offensichtlich gilt O ⊆ I für jedes Ideal I von Z.

Für eine Teilmenge X von Z setzen wir

ZX :=

{

O, X = ∅
{∑n

i=1 aixi | n ∈ N, a1, . . . , an ∈ Z, x1, . . . , xn ∈ X} , X 6= ∅

Zeigen Sie:

a) Für jede Teilmenge X von Z ist ZX Ideal von Z.

b) Ist I eine Menge von Idealen von Z, so ist
⋂

I∈I I Ideal von Z.

c) Sei X ⊆ Z und I die Menge aller Ideale I von Z mit X ⊆ I. Dann gilt ZX =
⋂

I∈I I.

d) Für ein Ideal I von Z gilt I ∩ N+ 6= ∅ genau dann, wenn I 6= O.



Aufgabe 9: Ideale in Z

Für x ∈ Z setzen wir Zx := Z{x}
(

= {ax | a ∈ Z}
)

, s. Aufgabe „Ideale in Z“.
Zeigen Sie:

a) Seien m,n ∈ Z. Dann gilt m|n genau dann, wenn Zn ⊆ Zm.

Ferner sind äquivalent:

(i) n|m und m|n
(ii) Zm = Zn

(iii) m = ±n.

Man verwende, dass für a, b ∈ Z gilt: Wenn ab = 0, so folgt a = 0 oder b = 0. Wenn ab = 1, so folgt

a = b = ±1.

b) Für jedes Ideal I von Z gibt es ein eindeutig bestimmtes m ∈ N mit I = Zm.

Unter Verwendung der Aufgabe „Ideale in Z“ betrachte man I ∩ N+. Im Fall I 6= O benutze man

Division mit Rest.

4.4 Matrizenringe

Aufgabe 10: Beispiel für einen kommutativen Unterring

Zeigen Sie:

1. Die Teilmenge der quadratischen (2, 2)-Matrizen mit der Gestalt

A =

(

a b
b a

)

mit a, b ∈ R

bildet einen kommutativen Unterring im Ring der (2, 2)-Matrizen.

2. Die Teilmenge der quadratischen (2, 2)-Matrizen mit der Gestalt

A =

(

a b
−b a

)

mit a, b ∈ R

bildet einen kommutativen Unterring im Ring der (2, 2)-Matrizen.



4.5 Nullteiler

Aufgabe 11: Integritätsringe

Sei R ein Ring. x ∈ R heißt linker (rechter) Nullteiler von R, wenn es ein y ∈ R \ {0R} gibt
mit xy = 0R (yx = 0R). x heißt Nullteiler von R, wenn x linker oder rechter Nullteiler von
R ist. R heißt nullteilerfrei, wenn R außer 0R keine Nullteiler besitzt. Ein kommutativer
nullteilerfreier Ring R mit Einselement 1R 6= 0R heißt Integritätsring. Zeigen Sie:

a) Jeder endliche nullteilerfreie Ring mit wenigstens zwei Elementen ist Schiefkörper.
Bemerkung: Nach einem Satz von Wedderburn ist jeder derartige Ring bereits kommutativ, also ein

Körper.

b) Jeder endliche Integritätsring ist ein Körper.

c) Für alle n ∈ N mit n ≥ 2 sind die folgenden Bedingungen äquivalent (s. Übungsaufgabe
30):

(i) Ln ist Integritätsring (ii) Ln ist Körper (iii) n ist Primzahl.



4.6 Teilbarkeit

Aufgabe 12: Größte gemeinsame Teiler und kleinste gemeinsame Vielfache I

Sei X ⊆ Z.
n ∈ Z heißt größter gemeinsamer Teiler von X (ggTX), wenn folgendes gilt:

• n|x für alle x ∈ X und

• s|n für alle s ∈ Z mit s|x für alle x ∈ X.

n ∈ Z heißt kleinstes gemeinsames Vielfaches von X (kgVX), wenn folgendes gilt:

• x|n für alle x ∈ X und

• n|s für alle s ∈ Z mit x|s für alle x ∈ X.

Mit GgTX (KgVX) bezeichnen wir die Menge aller größten gemeinsamen Teiler (kleinsten
gemeinsamen Vielfachen) von X.
Offensichtlich gilt GgT ∅ = GgT {0} = {0} = KgVZ und GgTZ = {1,−1} = KgV ∅.
(Hierzu verwendet man: Wenn für a ∈ Z gilt a| ± 1, so folgt a = ±1.)
Zeigen Sie:

a) GgTX = GgTZX

b) Sei I Ideal von Z. Für n ∈ Z sind äquivalent:

(i) n ∈ GgT I

(ii) n ∈ I und n|m für alle m ∈ I

(iii) I = Zn.

c) KgVX = GgT
⋂

x∈X Zx.

Insbesondere sind GgTX und KgVX für jede Teilmenge X von Z nicht leer. Weiterhin
gilt für n ∈ GgTX: Es gibt a1, . . . , ap ∈ Z und x1, . . . , xp ∈ X mit n = a1x1 + . . .+ apxp.
Bemerkung: Nach dem Darstellungssatz für Ideale in Z gibt es eindeutig bestimmte m,n ∈ N mit ZX = Zn

und
⋂

x∈X Zx = Zm. Dann gilt GgTX = {n,−n} und KgVX = {m,−m}. Meist bezeichnet man n als

den größten gemeinsamen Teiler und m als das kleinste gemeinsame Vielfache von X und setzt ggTX := n

sowie kgVX := m.





Teil II

Analysis

15





Kapitel 5

Folgen

5.1 Funktionenfolgen

5.1.1 gleichmaessige Konvergenz

Aufgabe 13: Charakteristische Funktion

Für M ⊂ X wird die charakteristische Funktion χM wie folgt definiert:

χM (x) :=

{

1 für x ∈M

0 für x /∈M
.

1. Berechne
lim
n→∞

χ[−n,n](x) für x ∈ R, n ∈ N.

Ist die Konvergenz gleichmäßig auf R?

2. Zeige, dass die Funktionenfolge {fn}n∈N, definiert durch

fn(x) := e−|x|χ[−n,n](x)

gleichmäßig auf R gegen die Funktion e−|x| konvergiert.

Aufgabe 14: Ein Beispiel zur gleichmäßigen Konvergenz

Man untersuche die Funktionenfolge

fn(x) =
1

1 + nx
, n ∈ N

auf punktweise und gleichmäßige Konvergenz in
den Intervallen

1. [0, 1]

2. (0, 1]

3. [q, 1], 0 < q < 1

n=1
n=2
n=5

Legend

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1x
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Aufgabe 15: Eine Aufgabe zur gleichmäßigen Konvergenz

Man zeige, dass die Summe
∑∞

n=1
sin(nx)

2n eine stetige Grenzfunktion besitzt und berechne
diese!

5.2 Zahlenfolgen

5.2.1 Anwendung der Definition

Aufgabe 16: Arithmetisches und geometrisches Mittel

Beweisen Sie:

1. Ist {an}n∈N eine konvergente Folge komplexer Zahlen, so gilt

lim
n→∞

an = lim
n→∞

a1 + a2 + . . .+ an
n

.

2. Ist {bn}n∈N eine konvergente Folge positiver reeller Zahlen, so gilt

lim
n→∞

bn = lim
n→∞

n
√

b1 · b2 · . . . · bn.

:

Aufgabe 17: Cauchy-Folgen

1. Führen Sie die Einzelheiten für den Beweis der folgenden Behauptung aus der Vorle-
sung aus: Jede komplexe Cauchyfolge ist beschränkt.

2. Ist die komplexe Zahlenfolge {an}n∈N mit

an = (−1)n + in

eine Cauchyfolge?

Aufgabe 18: (ε, n0)-Abschätzungen

Zeigen Sie, dass die nachstehenden Zahlenfolgen {an}n∈N gegen einen Grenzwertwert a
konvergieren, und bestimmen Sie zu jedem ε > 0 ein n0 = n0(ε), so dass |a− an| ≤ ε für
alle n ≥ n0 gilt (sogenannte (ε, n0)-Abschätzung):

1. an =
n2

n2 + 2n+ 2
,

2. an =
2n3i− 4n4

n4 + 3ni− 1
,

3. an =

(

1 +
1

n

)10

.

Achtung: In b) bezeichnet i die imaginäre Einheit, die Zahlenfolge ist also komplex!



Aufgabe 19: k-te Wurzel u. a.

1. Es sei {an}n∈N eine reelle oder komplexe Nullfolge. Zeigen Sie, dass dann auch
{

k
√
an
}

n∈N mit einem festen k ∈ N eine Nullfolge ist.

Ist
{

n
√
an
}

n∈N ebenfalls eine Nullfolge? (Beweis oder Gegenbeispiel!).

2. Es seien {xn}n∈N, {yn]}n∈N zwei komplexe Nullfolgen, so dass

|y0|+ |y1|+ . . .+ |yn| ≤ K

für alle n = 0, 1, . . . mit einer festen Schranke K gilt. Zeigen Sie, dass dann auch die
Folge {zn]}n∈N mit

zn := x0 yn + x1 yn?1 + . . .+ xn y0

eine Nullfoge ist.

Aufgabe 20: Anwendungen der geometrischen Folge

Es sei a > 0. Berechnen Sie die Grenzwerte limn→∞ an für

1. an =
a2n

1 + a2n+1
,

2. an =
an − a−n

an + a−n
,

3. an =
an

∏n
k=1(1 + ak)

,

5.2.2 liminf und limsup

Aufgabe 21: Eigenschaften von lim inf und lim inf

Sei {an}n∈N eine reelle Zahlenfolge.

Man zeige:

1.
lim inf
n→∞

an = lim
n→∞

inf {ak | k > n} = sup {inf {ak | k > n} | n ∈ N}

2.
lim sup
n→∞

an = lim
n→∞

sup {ak | k > n} = inf {sup {ak | k > n} | n ∈ N}



Aufgabe 22: Häufungswerte

Finde alle Häufungswerte der Zahlenfolge

xn =
n

n+ 5

(

sin
nπ

4
+ cos

nπ

4

)

, n ∈ N ∪ {0}

und bestimmen Sie lim supn→∞ xn und lim infn→∞ xn.

Aufgabe 23: Häufungswerte und Limesmengen

1. Bestimmen Sie die Limesmenge L (F ) der Folge F = {an − ⌊an⌋}n∈N mit den Fol-
gengliedern an := 4n/7. Dabei bezeichnet ⌊x⌋ den größten ganzen Anteil einer reellen
Zahl x, d. h. es ist N ∋ ⌊x⌋ ≤ x < ⌊x⌋+ 1.

2. Führen Sie die Einzelheiten für den Beweis der folgenden Behauptung aus: Jeder
Häufungspunkt der Limesmenge L (F ) einer einer komplexen Zahlenfolge F gehört
wieder zur Limesmenge L (F ).

Aufgabe 24: Rechnen mit oberen Grenzwerten

1. Es seien {an}n∈N, {bn}n∈N beschränkte reelle Folgen. Zeigen Sie:

lim inf
n→∞

an + lim sup
n→∞

bn ≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

2. Bestimmen Sie lim infn→∞ an und lim supn→∞ an für die Folgen {an}n∈N mit

an = (1 + (−1)n) (−1)n(n+1)/2 bzw. an =

(

1 +
(−1)n

2n

)3n

.

Aufgabe 25: Vergleich von Wurzel- und Quotientenkriterium.

Gegeben sei eine Zahlenfolge

1. Beweisen Sie:

lim inf
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ lim inf
n→∞

n
√

|an| ≤ lim sup
n→∞

n
√

|an| ≤ lim sup
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

2. Geben Sie eine Folge an, für die in der Formel kein Gleichheitszeichen auftritt.



Aufgabe 26: Polizistenregel

Zeigen Sie die Polizistenregel:
Gilt

lim
n→∞

an = a = lim
n→∞

bn und an ≤ cn ≤ bn für alle n ≥ n0,

so konvergiert auch die Folge {cn} und es gilt

lim
n→∞

cn = a.

Aufgabe 27: Potenzfunktion versus Exponentialfunktion

Bestimmen Sie für festes k ∈ N die folgenden Grentwerte

1. limn→∞ nk

bn für b > 1

2. limn→∞ nk an für |a| < 1

Hinweis: Zeigen Sie zunächst a) für k=1 und leiten Sie die anderen Ergebnisse davon ab.

5.2.3 rekursiv definierte Folgen

Aufgabe 28: Eine rekursiv definierte Folge in C

Untersuchen Sie die rekursiv definierte Folge

(5.1) zn+1 =
1

2

(

zn +
1

zn

)

in Abhängigkeit vom Startwert 0 6= z1 ∈ C.

monoton beschränkte

Aufgabe 29: Arithmetisches Mittel

Es seien x0, x1 ∈ R und die Folge {xn}n∈N sei rekursiv definiert durch

xn+1 =
xn + xn−1

2
für n ∈ N.

1. Zeigen Sie, das die Folge {xn}n∈N konvergiert.

2. Berechnen Sie limn→∞ xn.



Aufgabe 30: Konvergenzuntersuchung

Ist die Zahlenfolge

an =
1

n+ 1
+

1

n+ 2
+ ...+

1

2n

konvergent?

Aufgabe 31: fast monotone Folgen

Eine reelle Zahlenfolge {an}n≥1 werde rekursiv definiert durch

a1 = 2, an+1 =
√
an +

1

n
für n = 1, 2, . . . .

Zeigen Sie, dass die Folge konvergiert und bestimmen Sie den Grenzwert.

Aufgabe 32: Konvergenz rekursiv definierter Folgen

Gegeben sei ein c > 0, ein Startwert x0 ∈ (0, 2c )
und eine rekursiv definierte Folge: xn+1 := xn(2− c xn) (*)

Man zeige:

• a) Die Folge {xn} ist für n ≥ 1 monoton wachsend und beschränkt.

• b) Es ist limn→∞ xn = 1
c .

• c) Im Fall c ∈ (0, 2) und x0 = 1 gilt: xn = 1−(1−c)2
n

c für n ∈ N.

Aufgabe 33: Eine monoton wachsende Folge

Sei 0 < b ∈ R gegeben, wir definieren rekursiv die Folge

a1 =
√
b

an+1 =
√

b+ an

Zeigen Sie, dass die Folge konvergiert und berechnen Sie deren Grenzwert!

Aufgabe 34: Monotone Teilfolgen

Es sei a0 > 0 vorgegeben und die Folge

(5.2) an+1 =
1

1 + an

rekursiv definiert.

Besitzt die Folge {an} einen Grenzwert ? Wenn ja, dann berechne man diesen.



Aufgabe 35: Quadratwurzel

Es seien x0 und A positive reelle Zahlen. Ferner sei eine Folge {xn} rekursiv definiert durch:

xn =
1

2

(

xn−1 +
A

xn−1

)

, (n ∈ N).

1. Zeigen Sie, dass xn ≥
√
A, (n ∈ N).

2. Zeigen Sie, dass xn+1 ≤ xn, (n ∈ N).

3. Zeigen Sie, dass limn→∞ xn existiert.

4. Zeigen Sie, dass limn→∞ xn =
√
A.

Aufgabe 36: Einschachtelung für rekursive Folgen

Es seien a, b > 0 gegeben und die Folge {an}n∈N werde rekursiv definiert durch

a0 = a, a1 = b, an+2 =
√
an+1 +

√
an für n = 0, 1, . . .

Zeigen Sie, dass die Folge {an}n∈N konvergiert und bestimmen Sie den Grenzwert.

5.2.4 Teilfolgen

Aufgabe 37: Existenz einer speziellen Teilfolge

Besitzt die Folge {an}n≥1 mit an =
√
n+ 1−√

n eine Teilfolge {anl
}l≥1, die mit der Folge

{(
√
2− 1)l}l≥1 übereinstimmt? Wenn ja, geben Sie die ersten 5 Werte für nl an.

Aufgabe 38: Häufungswerte

Finde alle Häufungswerte der Zahlenfolge

xn =
n

n+ 5

(

sin
nπ

4
+ cos

nπ

4

)

, n ∈ N ∪ {0}

und bestimmen Sie lim supn→∞ xn und lim infn→∞ xn.





Kapitel 6

Funktionen

6.1 einer Variablen

6.1.1 Differentialrechnung

Anwendungen

Extremwertaufgaben
Aufgabe 39: Ein Minimalproblem

Es sei f : (a − ε, b + ε) → R eine differenzierbare Funktion mit a < b, ε > 0 und f(a) =
f(b) = 0, f(x) > 0 f.a. a < x < b.
Es sei für a < x0 < x1 < b die Funktion Dx0,x1 : [a, b] → R definiert durch

Dx0,x1(t) =
√

(t− x0)2 + f(t)2 +
√

(t− x1)2 + f(t)2 .

a) Gib eine geometrische Interpretation von D(t).

b) Zeige: Für alle a < x0 < x1 < b existiert ein ξ ∈ (a, b) mit

Dx0,x1(ξ) = inf
t∈[a,b]

Dx0,x1(t) .

c) Sei T die Tangente von f in dem Punkt (ξ, f(ξ)). Was kann man über die Winkel
zwischen T und der Strecke von (x0, 0) nach (ξ, f(ξ)) sowie zwischen T und der Strecke
von (x1, 0) nach (ξ, f(ξ)) sagen?

d) Gib eine geometrische Interpretation des Ergebnisses aus c).

Aufgabe 40: Kegelvolumen

Aus einem Kreis wird ein Sektor mit dem Zentriwinkel α herausgeschnitten. Der Sektor
wird zu einem Kegel zusammengerollt. Bei welcher Größe des Winkels α wird das Volumen
des Kegels am größten sein?
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Aufgabe 41: Maximaler Sichtwinkel

Auf einem der beiden Schenkel eines Winkels α, 0 <
α < π

2 , sind zwei Punkte A,B markiert mit den vom
Scheitelpunkt S aus gemessenen Abständen a, b(a < b).
Gesucht wird auf dem anderen Schenkel der Punkt X,
von dem aus die Strecke AB unter maximalem Winkel
φ erscheint. Wie lauten bei festem α die Bedingungen
für das Verhältnis λ = a : b, die darüber entscheiden,
ob φ ein spitzer, rechter oder stumpfer Winkel ist?

S A B

X

X’

α

β
γ

Aufgabe 42: Maximumproblem

Man suche unter allen Dreiecken mit gegebener fester Sei-
te c und gegenüberliegendem Winkel γ dasjenige mit dem
größten Flächeninhalt!

A Bc

C

Fehlerrechnung

Aufgabe 43: Bestimmung der dritten Dreiecksseite

Lösen Sie die folgende Aufgabe im Rahmen der elementaren Fehlerrechnung, d.h. bei klei-
nem h wird für eine Differenz f(x+ h)− f(x) näherungsweise f ′(x)∆h gesetzt.
In einem Dreieck soll die Messung der Seiten b und c als genau angesehen werden, während
die Messung des eingeschlossenen Winkels α mit dem absoluten Fehler |dα| behaftet ist.
Mit welchem absoluten und relativen Fehler kann daraus die dritte Dreiecksseite c berechnet
werden? Rechnen Sie mit folgenden Zahlenwerten: b = 400 Meter, c = 500 Meter, α = 60
Grad, |dα| = 10 Bogensekunden (1 Bogensekunde = (1/3600) Grad).

lHospital

Aufgabe 44: Differenzenformel für 2. Ableitung

Es sei f : (a, b) → R zweimal differenzierbar in einem Punkt x0 ∈ (a, b). Zeigen Sie, dass

lim
h→0

1

h2
(f(x0 + h)− 2f(x0) + f(x0 − h)) = f ′′(x0).



Aufgabe 45: Grenzwertberechnungen

Ermitteln Sie ob der Grenzwert existiert, und wenn er existiert, so berechnen Sie ihn.

1. lim
x→0

1−cosx
ex−1 .

2. lim
x→∞

(coshx− sinhx).

3. lim
x→0+0

(

1
sinx − 1

x

)

.

4. lim
x→0

arctanx
arcsinx .

5. lim
x→0

| sinx|x.

6. lim
x→e

ln(lnx)
sin(x−e) .

7. lim
x→+∞

x sin(1/x).

8. lim
x→+∞

√
x(e−1/x − 1).

Aufgabe 46: Uneigentliche Integrale und Regel von de l’Hospital

Es sei f integrierbar auf [0, b] für alle b > 0, limx→∞ f(x) = A, (A ∈ R), und a > −1.
Berechnen Sie

lim
x→∞

x−a−1

∫ x

0
f(t) ta dt.

Aufgabe:

Für einen Wert x ∈ (0, 1) betrachte man den
auf den Kreisbogen eines Einheitkreises mit
Mittelpunkt in (1,0) darüberliegenden Punkt
mit der Ordinate y. Die Länge des zugehöri-
gen Bogenstückes vom Ursprung bis zu die-
sem Punkt sei b. Die Gerade durch die Punkte
(0, b) und (x, y) schneide die x-Achse im Punk-
te (a, 0). Wie verhält sich a, wenn x gegen 0
strebt?

b

b

x 1x

y

a



Bestimmung der Ableitung

Aufgabe 47: Bestimmung der Ableitungen

Ermitteln Sie die Definitionsbereiche und Ableitungen für die folgenden Funktionen.

1. f1(x) = |x|a, (a ∈ R);

2. f2(x) = xx ;

3. f3(x) = sin(ex
2
) ;

4. f4(x) = arctan(x2 + 1) ;

5. f5(x) = arcosh (1 + sinx) .

Mittelwertsätze

Aufgabe 48: Anwendung des Mittelwertsatzes

Sei f : (0; 1)→R differenzierbar und der Grenzwert A = limx→0+0 f
′(x) existiere.

Zeigen Sie:
Dann existiert auch limx→0+0 f(x) := λ. Ferner ist die durch f(0) := λ auf [0; 1) fortgesetzte
Funktion in 0 rechtsseitig differenzierbar mit der Ableitung

f ′+(0) := lim
x→0+0

f(x)− f(0)

x− 0
= lim

x→0+0
f ′(x).

Aufgabe 49: Anwendung des Satzes von Rolle

Zeigen Sie mit Hilfe des Satzes von Rolle: Die Gleichung

xn + px+ q = 0, (p; q ∈ R)

hat für gerades n ∈ N höchstens zwei und für ungerades n ∈ N höchstens drei reelle
Lösungen x.

Ungleichungen aus Mittelwertsatz

Aufgabe 50: Bernoulli-Ungleichung

Es seien a ∈ R, a 6= 0, a 6= 1, und x ≥ −1. Benutzen Sie den Mittelwertsatz um die
folgenden Ungleichungen zu zeigen:

(1 + x)a ≤ 1 + ax wenn 0 < a < 1

(1 + x)a ≥ 1 + ax wenn a < 0 oder a > 1.



Aufgabe 51: Verallgemeinerter Satz von Rolle I

Beweisen Sie folgende verallgemeinerte Variante des Satzes von Rolle:
Es sei f : (a, b) → R eine n-mal differenzierbare Funktion und es seien a < x0 < x1 < . . . <
xn < b Nullstellen von f . Dann existiert ein ξ ∈ (x0, xn) mit f (n)(ξ) = 0.

Aufgabe 52: Verallgemeinerter Satz von Rolle II

Beweisen Sie den folgenden verallgemeinerten Satz von Rolle:

Es sei n eine natürliche Zahl und f eine auf einem abgeschlossenen Intervall [a, b] stetige
Funktion, die bei a n-mal und im Inneren des Intervalls (n + 1)-mal differenzierbar ist;
weiterhin gelte:

f(a) = f ′(a) = f ′′(a) = ... = f (n)(a) = f(b) = 0.

Dann gibt es im Intervall (a, b) eine Stelle c mit f (n+1)(c) = 0 .

Aufgabe 53: Zwischenwertsatz von Darboux

Beweisen Sie den Zwischenwertsatz von Darboux: Ist f : [a, b] → R differenzierbar und
f ′(a) < m < f ′(b), so existiert ein ζ ∈ (a, b) mit f ′(ζ) = m.
Hinweis: Betrachten Sie für ein hinreichend kleines, aber festes h > 0 die stetige Hilfsfunk-
tion φ mit

φ(x) =
f(x+ h)− f(x)

h
für x ∈ [a, b− h].

Taylorscher Lehrsatz

Aufgabe 54: Restgliedabschätzung

Verwenden Sie den Taylorschen Satz, um die Abschätzung
∣

∣

∣

∣

log(1 + x)− x+
x2

2

∣

∣

∣

∣

<
1

2000
für |x| ≤ 0.1

zu zeigen.



Taylorentwicklung von eAufgabe55:−1/x2

Es sei

f(x) =

{

e−
1
x2 für x 6= 0

0 für x = 0
.

Zeigen Sie, dass f ∈ C∞(R), und f (n)(0) = 0 für jedes n ∈ N.
Hinweis: Zeigen Sie durch Induktion, dass für x 6= 0

f (n)(x) = pn

(

1

x

)

e−
1
x2

gilt, für gewisse Polynome pn, (n ∈ N ∪ {0}).

Theorie

Aufgabe 56: Differentiation von Determinanten

Determinanten werden zeilen- oder spaltenweise differenziert.

Es sei A(x) = (ai,j(x))1≤i,j ≤ n eine (n × n)-Matrix, deren Einträge stetige Funktionen
sind und D(x) = detA(x). Weiterhin seien für eine n-reihige Determinante D(x) und
1 ≤ k ≤ n die Determinaten Sk(x) bzw. Zk(x) diejenigen Determinanten, die aus D(x)
dadurch entstehen, dass man die Funktionen in der kten Spalte bzw. Zeile durch Ihre
ersten Ableitungen ersetzt. Dann gilt:

D′(x) =
n
∑

k=1

Sk(x) =
n
∑

k=1

Zk(x).

Aufgabe 57: Quotientenregel

Beweisen Sie die Quotientenregel mit Hilfe der Entwicklungsformel

f(x+ h) = f(x) + f ′(x)h+ hε(h)

für differenzierbare Funktionen!



Aufgabe 58: Ableitung mit Hilfe der Definition.

Es seien a ≥ 0 und

fa(x) :=

{

|x|a sin
(

1
x

)

wenn x 6= 0

0 wenn x = 0
.

Zeigen Sie:

1. fa ist stetig in 0 für jedes a > 0, aber nicht für a = 0.

2. fa ist differenzierbar in 0 für jedes a > 1, aber nicht für a ∈ (0; 1].

3. f ′a ist stetig in 0 für a > 2, aber nicht für a ∈ (1; 2]

4. Für k ∈ N, k > 1 ist f (k−1)
a differenzierbar in 0 für jedes a > k − 1, aber nicht für

a ∈ (k − 2; k − 1] und f (k)a ist stetig in 0 für a > k, aber nicht für a ∈ (k − 1; k]

6.1.2 Grenzwerte und Stetigkeit

Gleichmäßige Stetigkeit

Aufgabe 59: Gleichmäßige Stetigkeit

1. Wann heißt eine Funktion f : R → R gleichmäßig stetig?

2. Muss jede gleichmäßig stetige Funktion f : R → R auch beschränkt sein, d.h.
gibt es dann eine Konstante C ∈ R mit |f(x)| ≤ C für alle x ∈ R (Beweis oder
Gegenbeispiel)?

3. Sei f : R → R gleichmäßig stetig. Zeigen Sie, dass dann eine Konstante C ∈ R existiert
mit

|f(x)| ≤ C(|x|+ 1) für alle x ∈ R.

4. Zeigen Sie, dass jedes reelle Polynom von mindestens zweitem Grad nicht gleichmäßig
stetig auf ganz R ist.

Aufgabe 60: Stetigkeit der Wurzelfunktion

1. Beweisen Sie die folgende Ungleichung

a, b ≥ 0 =⇒
∣

∣

∣

√
a−

√
b
∣

∣

∣
≤
√

|a± b| ≤ √
a+

√
b (W)

2. Zeigen Sie mit Hilfe von a), dass die Funktion f(x) =
√
x im ihrem Definitionsbereich

stetig ist.

3. Ist f in ihrem Definitionsbereich gleichmäßig stetig?



Aufgabe 61: Gleichmäßige Stetigkeit

Ist die Funktion f(x) := 1
x gleichmäßig stetig

1. auf dem Intervall (0, 1];

2. auf den Intervallen (a, 1], (a ∈ (0, 1)) ?

Begründen Sie Ihre Antworten.

Aufgabe 62: Untersuchungen auf gleichmäßige Stetigkeit

Sind die folgenden Funktionen auf den angegebenen Intervallen gleichmäßig stetig?

1. f1(x) =
√
1− x2, x ∈ [0, 1].

2. f2(x) = sin(1/x), x ∈ [0, 1].

3. f3(x) = x2, x ∈ [0,+∞).

4. f4(x) = (1 + x)−1, x ∈ [0,+∞).

Singularitäten

Aufgabe 63: wesentliche Singularität

Es werde im Intervall (0, 1) eine reelle Funktion f = f(x) durch die Vorschrift

f(x) = n(n+ 1)x− n für x ∈ [1/(n+ 1), 1/n), n = 1, 2, . . .

definiert. Existiert der Grenzwert limx→+0 f(x) und welchen Wert hat er gegebenenfalls?

Stetigkeitsuntersuchungen

Aufgabe 64: Beschränktes Wachstum

Eine reelle Funktion f = f(x) sei für hinreichend große x ∈ R definiert und in jedem
endlichen Intervall I ⊂ D({) gleichmäßig beschränkt. Ferner gelte mit einem reellen q > 1

lim
x→+∞

f(qx)− f(x)

x
= a ∈ R.

Zeigen Sie, dass daraus folgt:

lim
x→+∞

f(x)

x
=

a

q − 1
.



Aufgabe 65: Untersuche auf Stetigkeit

Untersuche die Funktion

f(x) =

{

0 für x /∈ Q
1
q für x = p

q mit p, q,∈ N, sowie p, q teilerfremd.

auf Stetigkeit

Aufgabe 66: Untersuche auf Stetigkeit

Die abzählbare Menge der rationalen Zahlen im Intervall I = [0, 1] werde als eine unendliche
Folge {rn}n≥1 geschrieben. Mit der Bezeichnung

A(x) = {n|n ∈ N, rn ≤ x} für x ∈ I

definieren wir die Funktion f : I → R durch

f(x) =
∑

n∈A(x)

1

2n
.

Beweisen Sie:

1. Die Funktion f ist auf I monoton wachsend.

2. Die Funktion f ist an den irrationalen Stellen in I stetig und an den rationalen Stellen
in I unstetig.

Aufgabe 67: Stetigkeit der Betragsfunktion

Sei I ein offenes Intervall. Sind f und g auf I definiert, so setzen wir F (x) :=
max{f(x); g(x)}, (x ∈ I).

1. Es sei f stetig auf I. Zeigen Sie, dass dann |f | ebenfalls stetig auf I ist.

2. Seien f und g stetig auf I. Zeigen Sie, dass dann auch F stetig auf I ist.
Hinweis: Zeigen Sie zunächst die Formel

F (x) =
1

2
(f(x) + g(x) + |f(x)− g(x)|) .



Aufgabe 68: Stetigkeit der Wurzelfunktion

1. Beweisen Sie die folgende Ungleichung

a, b ≥ 0 =⇒
∣

∣

∣

√
a−

√
b
∣

∣

∣
≤
√

|a± b| ≤ √
a+

√
b (W)

2. Zeigen Sie mit Hilfe von a), dass die Funktion f(x) =
√
x im ihrem Definitionsbereich

stetig ist.

3. Ist f in ihrem Definitionsbereich gleichmäßig stetig?

Stetigkeit des Maximus und von |Aufgabe69 : f(x)|.

Seien f und g auf einem offenen Intervall I definiert, das einen Punkt x0 enthält. Ferner
seien f und g stetig in x0, und wir definieren

F (x) := max {f(x), g(x)} , (x ∈ I).

1. Man zeige, dass die Funktion F stetig in x0 ist.

2. Man benutze a), um zu zeigen, dass |f | stetig in x0 ist.

unbestimmte Ausdrücke

Aufgabe 70: Binomischer Satz

Berechnen Sie die folgenden Grenzwerte:

1. lim
x→0

(1 +mx)n − (1 + nx)m

x2
, m, n ∈ N.

2. lim
x→+∞

(2x+ 3)13(4x− 1)7

(5x− 2014)20
.



Aufgabe 71: Unbestimmte Ausdrücke

Berechnen Sie für natürliche Zahlen p1, p2, q1, q2 die Grenzwerte

1.

lim
x→1

xp1 − 1

xp2 − 1
,

2.

lim
x→1

x
1
q1 − 1

x
1
q2 − 1

,

3.

lim
x→1

x
p1
q1 − 1

x
p2
q2 − 1

.

Hinweis: Verallgemeinerte dritte binomische Formel

6.1.3 Integralrechnung

bestimmte Integrale

Anwendungen
Aufgabe 72: Eine Aufgabe mitten aus dem fröhlichen (Studenten-)Leben.

Eine gewisse Menge an Bier wird in einer stehenden kreiszylinderförmigen Tonne vom Ra-
dius r bzw. einem kreiskegelstumpfförmigen Behälter mit dem Radius r am Boden und
Radius R > r in der Höhe H > 0 gelagert. In die Böden wird jeweils ein Zapfhahn mit
dem gleichen Querschnitt eingeschlagen. Aus welchem Behälter ist die gleiche Menge Bier
bei geöffnetem Zapfhahn schneller vollständig ausgelaufen? Hinweis: Benutzen Sie Torricel-
li’s Ausflußgesetz (benannt nach dem Mathematiker und Physiker Evangelista Torricelli,
1608-1647), wonach die Ausflußgeschwindigkeit v einer idealen Flüssigkeit (Bier?) durch
eine nach unten gerichtete Öffnung sich proportional zur Höhe h der Flüssigkeit verhält,
genauer v =

√
Gh,G Gravitationskonstante. Leiten Sie daraus eine Differentialgleichung

für die Flüssigkeitshöhe h(t) zur Zeit t in beiden Fällen ab und diskutieren Sie diese.



Aufgabe 73: Welches Gefäß läuft zuerst leer?
Eine Übung zur Integration

Wir betrachten eine bis zum Rand mit Wasser gefüllte Halbkugel vom Radius r. Daneben
stehen ebenfalls bis zum Rand gefüllte Gefäße, und zwar

1. ein Zylinder vom Radius r,

2. ein auf der Spitze stehender gerader Kreiskegel mit Öffnungswinkel 90◦ und

3. ein ebensolcher Kreiskegel, der aber auf seiner Grundfläche steht.

1. Wie hoch sind die beschriebenen Gefäße, wenn alle die gleiche Wassermenge
enthalten?

An den Gefäßen werden Öffnungen so angebracht, dass die Ausflussgeschwindigkeita v des
Wassers nur noch von der Höhe y der Wassersäule abhängt; in allen Gefäßen sei also v = a

√
y

mit ein und derselben Konstanten a.
2. In welcher Reihenfolge laufen die Gefäße leer?

aDie Ausflussgeschwindigkeit hängt i.a. von der Größe und Form der Öffnung, von der Form des Ge-
fäßes, von der Viskosität der Flüssigkeit und von der Höhe y des Flüssigkeitsspiegels ab. Bis auf die letzte
Abhängigkeit seien alle anderen durch Form und Größe der Ausflussöffnung so berücksichtigt, dass sie in
einer Konstanten a zusammengefasst werden können.

Aufgabe 74: Integralabschätzungen

Zeige
1

2
<

∫ 1

0

dx√
4− x2 + x3

<
π

6
, und

∫ 1

0

dx√
4− 3x+ x3

<
2

3
.

Aufgabe 75: Integrand mit Beträgen

Berechne

∫ 3

0

√

|x2 − 3x+ 2|dx.

Aufgabe 76: Rekursionsformel

Berechne

In =

∫ π
2

0
sinn x dx.

für n = 0, 1, 2, ... .

Hinweis: Zeige zunächst In+2 = In − 1
n+1In+2.



Aufgabe 77: Substitutionstrick

1. Berechnen Sie durch die Substitution x = π − y das Integral

I1 =

∫ π

0

x sinx

1 + cos2 x
dx.

2. Versuchen Sie die gleiche Substitution bei dem Integral

I2 =

∫ π

0

x cosx

1 + sin2 x
dx.

3. Berechnen Sie das Integral in I1 durch partielle Integration.

4. Berechnen Sie das Integral in I2 anders.

Cauchy-Integral

Aufgabe 78: Cauchy-Integrierbarkeit monotoner Funktionen

Es sei f(x) = 1
k + 1

k+1 in
(

1
k+1 ,

1
k

]

, (k ∈ N), und f(0) = 0. Zeigen Sie, dass f auf [0, 1]

monoton wachsend ist. Approximieren Sie f durch Treppenfunktionen, um das Integral von
f über [0, 1] zu berechnen.

einfache Berechnungen

Rotationsflächen
Aufgabe 79: Oberfläche von Rotationskörpern

Berechne den Inhalt der Oberfläche des durch Rotation der Kurve y(x) = 1 − x2, |x| ≤ 1
um die x-Achse entstehenden Rotationskörpers.

Aufgabe 80: Oberfläche der Kugel

Berechne den Inhalt der Oberfläche des durch Rotation der Kurve (x,
√
R2 − x2), |x| ≤ R

um die x-Achse entstehenden Rotationskörpers.

Aufgabe 81: Oberfläche Eines Rotationellipsoides

Berechne den Inhalt der Oberfläche eines Rotationsellipsoides

x2

c2
+
y2

a2
+
z2

a2
= 1,

d. h. des durch Rotation der Kurve (x, ac
√
c2 − x2), |x| ≤ c um die x-Achse entstehenden

Rotationskörpers.



Rotationskörper

Aufgabe 82: Höhe eines Rotationsellpsoides bei gegebenem Volumen

Das Innere eines Glases soll die Form eines Rotationsparaboloids z = x2 + y2 haben.
Berechne die Höhe h (des Inneren), die es haben muss, wenn es 0,5 Liter fassen soll, mittels

1. Volumenberechnung durch Integration im R3,

2. Guldinscher Regel.

Aufgabe 83: Ringe als Rotationskörper

M :=
{

(x, y) ∈ R2 : 1 ≤ x ≤ 5,

1 ≤ y ≤ 1 +
1

2

√

6x− x2 − 5

}

Man berechne das Volumen des Körpers K, der bei
Rotation des Gebietes M um die x-Achse bzw. um
die y-Achse entsteht.

0

1

2

3

4

5

6

y

1 2 3 4 5 6

x

Aufgabe 84: Eine Aufgabe - 3 Lösungen

Man berechne das Volumen des Körpers, der bei Rotation der
durch die Kurve

C = {(x, y) ∈ R2 : 9y2 − x(3− x)2 = 0, 0 ≤ x ≤ 3}

begrenzten Fläche um die y-Achse entsteht.
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Theorie

Aufgabe 85: ausgezeichnete Zerlegungsfolge

Man zeige, daß die Vorschrift

Zn : a = x
(n)
0 < x

(n)
1 < ... < x(n)n = b

mit
x(n)ν = aqνn; ν = 0, 1, ..., n, qn = (b/a)

1
n > 1

eine ausgezeichnete Zerlegungsfolge des Intervalls [a, b] definiert!



Aufgabe 86: Konvexe Hülle

Bekanntlicherweise nennt man eine Menge K ⊂ C (C komplexe Ebene) konvex, wenn sie
mit je zwei Punkten z1, z2 ∈ K auch die Verbindungsstrecke [z1, z2] ≡ {z = λz1+(1−λ)z2 :
0 ≤ λ ≤ 1} der beiden Punkte enthält. Ist E ⊂ C eine beliebige Menge, dann heißt

convE = ∩{K : K (⊂ C) konvex, K ⊃ E}

ihre konvexe Hülle. Offenbar ist convE die kleinste konvexe Menge, die E umfaßt. Man
zeige:

convE =

{

n
∑

i=1

λizi : λi ≥ 0,
n
∑

i=1

λi = 1, zi ∈ E, n ∈ N

}

.

Die in der Klammer beschriebenen Linearkombinationen
∑

λizi heißen Konvexkombinatio-
nen der Punkte z1, ..., zn.

Aufgabe 87: Nicht Riemann-integrierbare Funktion, die Stammfunktion besitzt.

1. Zeigen Sie: Die Funktion F : [0, 1] → R mit

F (x) :=

{ √
x3 sin

(

1
x

)

für 0 < x ≤ 1
0 für x = 0

ist für alle x ∈ [0, 1] differenzierbar.

2. Berechnen Sie die Ableitung f := F ′ und zeigen Sie, dass f nicht R-integrierbar ist.

Mit anderen Worten: Die Funktion f(x) hat zwar eine Stammfunktion, ist aber nicht
R-integrierbar.



Aufgabe 88: Vereinfachtes Konvergenzkriterium

Man beweise die folgende Modifikation der Konvergenzbedingung für Riemannsche Zwi-
schensummen:

(6.1) ∃ limσ(Z, T ) = A gdw. ∀ε > 0 ∃Z0 ∀T : |σ(Z0, T )−A| < ε;

die Zwischenpunktsysteme T sind natürlich zu Z0 zu bilden.

Verbal bedeutet die Aussage, dass es für den Nachweis der Existenz des Integrals genügt,
nur eine einzige Zerlegung Z0 zu finden, so dass für jede Wahl von Zwischenpunkten T die
Abschätzung in (6.1) gilt.

Hinweis: Man beweise zunächst folgenden Hilfsatz:

Für E1, ..., EN ⊂ C folgt aus

(6.2) ∀zν ∈ Eν :

∣

∣

∣

∣

∣

N
∑

ν=1

zν

∣

∣

∣

∣

∣

< ε.

sogar

∀wν ∈ convEν :

∣

∣

∣

∣

∣

N
∑

ν=1

wν

∣

∣

∣

∣

∣

< ε.

Dabei ist

convE =

{

n
∑

i=1

λizi : λi ≥ 0,
n
∑

i=1

λi = 1, zi ∈ E, n ∈ N

}

.

die Menge aller Konvexkombinationen der Punkte z1, ..., zn.

uneigentliche Integrale
Aufgabe 89: Uneigentliches Integral

Existiert
∫∞
0

x lnx
(1+x2)3

dx?



Aufgabe 90: Existenz uneigentlicher Integrale

Bestimmen Sie, für welche positiven Zahlen p die folgenden uneigentlichen Integrale kon-
vergieren:

1. I1 =
∫ ∞

0
e−xxp dx

2. I2 =
∫ ∞

1

sinx

xp
dx

3. I3 =
∫ ∞

0
(log x)−p dx

4. I4 =
∫ ∞

0
sin(xp) dx

5. I5 =
∫ 1

0

1 + ex

(sinx)p
dx

Aufgabe 91: Uneigentliche Integrale und Regel von de l’Hospital

Es sei f integrierbar auf [0, b] für alle b > 0, limx→∞ f(x) = A, (A ∈ R), und a > −1.
Berechnen Sie

lim
x→∞

x−a−1

∫ x

0
f(t) ta dt.

Aufgabe 92: Vergleichskriterien für uneigentliche Integrale

Es seien f und g integrierbar auf [a, b] für jedes b mit b > a.
Beweisen Sie

1. Wenn |f(x)| ≤ g(x) für alle x ≥ a und
∫ ∞

a
g(x) dx < +∞ gilt, so konvergiert

∫ ∞

a
f(x) dx absolut.

2. Wenn 0 ≤ f(x) ≤ g(x) für alle x ≥ a und
∫ ∞

a
f(x) dx = +∞ gilt, so ist auch

∫ ∞

a
g(x) dx = +∞.



Aufgabe 93: Vergleichskriterien für uneigentliche Integrale

Es seien b > 0 und f integrierbar auf [ε, b] für alle ε ∈ (0; b). Beweisen Sie die folgenden
Aussagen:

1. Ist |f(x)| ≤ Mx−p für x ∈ (0; b], mit Zahlen p ∈ (0; 1) und M > 0, so konvergiert
∫ b

0
f(x)dx absolut.

2. Ist f(x) ≥ Mx−p für x ∈ (0; b], mit Zahlen p ≥ 1 und M > 0, so ist
∫ b

0
f(x)dx =

+infty.

Riemann-Stieltjes-Integral

Aufgabe 94: Existent des Riemann-Stieltes-Integrals bei Sprüngen

Seien α, f1, f2 : [0, 2] 7→ R und

α(x) =

{

1 für x ≤ 1

2 für x > 1
, f1(x) =

{

3 für x ≤ 1

4 für x > 1
, f2(x) =

{

3 für x < 1

4 für x ≥ 1
.

Existieren die Riemann-Stieltjes-Integrale

∫ 2

0
fi(x) dα für i = 1, 2 ?

unbestimmte Integrale

Partialbruchzerlegung

Aufgabe 95: einfache Nullstellen

Man bestimme
∫

x

x2 − x− 6
dx.



Aufgabe 96: Mehrfache komplexe Nullstellen

1. Zeigen Sie, dass im Falle mehrfacher komplexer Nullstellen der Ansatz

∫

dx

(x2 + β2)k
=

Ax+B

(x2 + β2)k−1
+ C

∫

dx

(x2 + β2)k−1

mit

A =
1

2β2(k − 1)
, B = 0, C =

2k − 3

2β2(k − 1)

zum Erfolg führt (k = 2, 3...).

Hinweis: Differenzieren, Multiplikation mit (x2 + β2)k, Koeffizientenvergleich.

2. Berechnen Sie mit dieser Methode
∫

dx

(x2 + 2x+ 5)2
.

Aufgabe 97: Mehrfache Nullstellen

Man bestimme
∫

2x

(x2 + 1)(x− 1)2
dx.

Aufgabe 98: Quadratisch irreduzibler Nenner

Man bestimme
∫

2x

(x2 + 1)(x2 − 1)
dx.



Aufgabe 99: Partialbruchzerlegungen

1. I1 =
∫

3x3 + 5x2 − 25x− 1

(x+ 2)(x− 1)2
dx

2. I2 =
∫

3x3 − x2 − 4x+ 13

x4 − 4x3 + 13x2
dx

3. I3 =
∫

1

ex + 1
dx

4. I4 =
∫

sinx+ cosx

3 + sin 2x
dx

5. I5 =
∫

x2 − x+ 1

(x2 + 1)
√
x2 + 1

dx

Partielle Integration

Aufgabe 100: Rekursion für
∫

xn sinx dx

Beweisen Sie die Beziehung

S(n) :=

∫

xn sinx dx = −
n
∑

k=0

k!

(

n
k

)

xn−k cos
(

x+ k
π

2

)

+ c,

und stellen Sie eine analoge Formel für C(n) =
∫

xn cosx dx auf!

Stammfunktionen

Aufgabe 101: Bestimmung von Stammfunktionen

Man berechne die Stammfunktionen zu

1.
∫

x2 lnx dx,

2.
∫

x ln(x2) dx,

3.
∫

ex sinx dx,

4.
∫

x(ax2 + b)k dx, (a > 0, b > 0, k ∈ R).



Substitution

Aufgabe 102: Integration rationaler Ausdrücke in sinx und cosx

1. Es bezeichne R = R(u, v) eine beliebige rationale Funktion von zwei Variablen u, v.
Zeigen Sie, dass sich Integrale vom Typ

∫

R(sinx, cosx) dx

durch die Substitution t = tan(x/2) auf die Berechnung von unbestimmten Integralen
über rationale Funktionen zurückführen lassen.

2. Berechnen Sie mit dieser Methode die Integrale

i)
∫

dx

sinx+ cosx
ii)

∫

1 + sinx

1− cosx
dx

6.1.4 Spezielle Funktionen

Aufgabe 103: Identitäten

Beweisen Sie die folgenden Gleichungen :

1. arcosh x = ln(x+
√
x2 − 1), (x ∈ [1,+∞)).

2. sin(arccosx) =
√
1− x2, (x ∈ [−1,+1]).

3. loga x+ loga y = loga(xy), (a ∈ R, a 6= 1, x, y > 0).

6.2 mehrerer Variabler

6.2.1 Differentialrechnung

partielle Ableitungen

Anwendungen
Aufgabe 104: Parameterintegrale

Berechne die Ableitung der Funktion

g(t) =

∫ t2

√
t
ln(tx) dx

direkt und mit der Formel für Parameterintegrale.



Existenz und Berechnung
Aufgabe 105: Partielle Ableitungen

Berechnen Sie die partiellen Ableitungen ∂f
∂x ,

∂f
∂y der Funktion f = f(x, y) mit den

Funktionswerten
f(x, y) = esinx + ecos(x+y) für (x, y) ∈ R2.

Aufgabe 106: Totale Ableitung I

Untersuchen Sie die Funktion

f(x, y) =

{

3
√

x2 + y2 für (x, y) 6= (0, 0)

0 für (x, y) = (0, 0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)!

Aufgabe 107: Totale Ableitung II

Untersuchen Sie die Funktion

f(x, y) =







xy√
x2+y2

für (x, y) 6= (0, 0)

0 für (x, y) = (0, 0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)!

Aufgabe 108: Totale Ableitung III

Untersuchen Sie die Funktion

f(x, y) =

{

y(x2+y2)3/2

(x2+y2)2+y2
für (x, y) 6= (0, 0)

0 für (x, y) = (0, 0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)!

Aufgabe 109: Totale Ableitung IV

Untersuchen Sie die Funktion

f(x, y) =

{

(

x2 + y2
)

sin
(

1
x2+y2

)

für (x, y) 6= (0, 0)

0 für (x, y) = (0, 0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)auf Stetigkeit, par-
tielle (stetige) und totale Differenzierbarkeit in (0, 0)!



Aufgabe 110: Totale Ableitung und Richtungsableitung

Sei f(0, 0) = 0 und

f(x, y) =
x3

x2 + y2
für (x, y) 6= (0, 0).

1. Zeigen Sie, dass fx und fy überall existieren und beschränkt auf R2 sind.

2. Zeigen Sie, dass die Richtungsableitungen ∂f
∂u(0, 0), (u = (u1, u2) ∈ R2, ‖u‖ = 1),

existieren, und dass ihr Absolutwert nicht größer als 1 ist.

3. * Zeigen Sie, dass andererseits f nicht differenzierbar in (0, 0) ist.

Taylorentwicklung

Aufgabe 111: Taylorentwicklung von f(x, y, z) = sin(x+ y) cos(xy) cosh z.

1. Berechne das Taylorpolynom T2(x, y, z) zweiter Ordnung für f(x, y, z) = sin(x +
y) cos(xy) cosh z im Punkt (x0, y0, z0) = (0, 0, 0).

2. Bestimme ein r > 0 so, dass |f(x, y, z)− T2(x, y, z)| < 10−5 für ‖(x, y, z)‖∞ < 10−r

ist.

Aufgabe 112: Taylorentwicklung von xy.

Berechne das Taylorpolynom für f(x, y) = xy im Punkt (x0, y0) = (1, 1) einschließlich der
quadratischen Glieder.





Kapitel 7

Induktion

Aufgabe 113: Abschätzungen von n!

Zeigen Sie für n ∈ N, n > 2

1. 3
(n

3

)n
< n! < 2

(n

2

)n

2. e
(n

e

)n
< n!

3. n! <

(

n+ 1

2

)n

Aufgabe 114: Abzählbarkeit von Teilmengen von N

Sei M eine Menge und f :M 7→ N, g :M 7→ N gegeben, so dass f surjektiv und g injektiv
ist. Man konstruiere (mit vollständiger Induktion) eine bijektive Abbildung h :M 7→ N.
Hinweis: Zeige

1. g(M) ist unbeschränkt

2. für eine unbeschränkte Menge A ⊆ N gibt es eine Bijektion b : A 7→ N.
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Aufgabe 115: allgemeine Binomialkoeffizienten

Für dien gewöhnlichen Binomialkoeffizienten

(

m
n

)

erhält man für m,n ∈ N durch Kürzen

mit (m− n)! auch

(

m
n

)

=
m!

n! (m− n)!
=
m (m− 1) . . . (m− n+ 1)

n!
.

In dieser Form muss nun m nicht mehr notwendig eine natürliche Zahl sein.
Dementsprechend kann man für α ∈ R, n ∈ N einen „verallgemeinerten“ Binomialkoeffizi-
enten definieren durch

(

α
n

)

=

{

1 falls n = 0
α (α−1) ...(α−n+1)

n! falls n > 0

Man zeige:
Für alle n ∈ N und beliebige α, β ∈ R gilt

n
∑

k=0

(

α
n− k

) (

β
k

)

=

(

α+ β
n

)

.

Aufgabe 116: Summe über Cosinusfunktionen

Man beweise für n ∈ N die folgende Formel:

n
∑

k=1

cos kx =
sin 2n+1

2 x

2 sin x
2

− 1

2
.

Aufgabe 117: Existenz und Berechnung der n-ten Wurzel

Sei x, y ∈ R, 0 < x, 0 < y < 1, y < x und p ∈ N\{0}.
Die Abbildungen f+, f− : N 7→ R seien wie folgt definiert

f−(0) = y, f−(n+ 1) = f−(n) + h(f−(n)), f+(n) = f−(n) + g(f−(n)),

wobei für z > 0

h(z) = min

{

1,
x− zp

p(z + 1)p−1

}

, g(z) =
x− zp

pzp−1
.

Zeige
f−(n) ≤ f−(n+ 1) ≤ f+(m), ∀n,m

und beweise damit

sup f−(N) = inf{sup{f+(m) |m > k} | k ∈ N} = p
√
x

.



Aufgabe 118: Indexverschiebung

Beweisen Sie durch vollständige Induktion

n
∑

k=0

(

n
k

)

= 2n!

Aufgabe 119: Zeige:

Jede nichtleere Teilmenge der natürlichen Zahlen N besitzt ein kleinstes Element.

Aufgabe 120: Summe über Sinusfunktionen

Man beweise für n ∈ N die folgende Formel:

n
∑

k=1

sin kx =
sin n+1

2 x

sin x
2

sin
nx

2

Aufgabe 121: Summenformel für Binomialkoeffizienten

Man beweise für a ∈ R mit vollständiger Induktion:

n
∑

k=0

(

a+ k
k

)

=

(

a+ n+ 1
n

)

.

Aufgabe 122: Verallgemeinerte Bernoulli-Ungleichung

Beweisen Sie mittels vollständiger Induktion die folgende Ungleichung

n
∏

i=1

(1 + ai) ≥ 1 +
n
∑

i=1

ai

für beliebige reelle Zahlen a1, . . . , an mit ai ≥ −1 und aiaj ≥ 0 für i, j = 1, . . . , n.
Welchen Ungleichungstyp erhält man im Spezialfall a1 = a2 = . . . = an?

Aufgabe 123: Schritt von n auf n+ 2

Beweisen Sie durch vollständige Induktion, dass die Gleichung

(7.1) x2 + y2 = zn

für jede fest gewählte natürliche Zahl n unendlich viele Lösungen (x, y, z) ∈ N3 besitzt.





Kapitel 8

reelle Zahlen

8.1 p-adische Zahlen

Aufgabe 124: a-Brüche

Einem gegebenen a-Bruch (z1z2 . . . zh, zh+1 . . .)a wird die Intervallschachtelung In =
[an, bn], n = 1, 2, . . . mit

(*) an :=
n
∑

i=1

zia
h−i, bn := an + ah−n

zugeordnet.

1. Bestimmen Sie für den Dualbruch (1010, 101010 . . .)2 diese Intervallschachtelung und
die eindeutig bestimmte reelle Zahl, die allen diesen Intervallen angehört.

2. Zu jeder reellen Zahl x > 0 existiert ein a-Bruch, so dass x ∈ [an, bn), n ∈ N mit
an, bn entsprechend (*) gilt. Zeigen Sie, dass für die Ziffern zn dann auch die folgende
Beziehung gilt:

zn =
⌊

xan−h
⌋

− a
⌊

xan−h−1
⌋

.

(Hierbei bezeichnet ⌊y⌋ den ganzen Anteil einer reellen Zahl y.)

3. Bestimmen Sie die (periodischen) a-Bruchentwicklungen der Zahlen z = 1/(a − 1)2

für a = 3, 4, 5, 6, 7. Welche Vermutung ergibt sich für den Fall eines beliebigen a ∈
N, a ≥ 2? Versuchen Sie, Ihre Vermutung zu beweisen.

Aufgabe 125: Abzählbarkeit von Teilmengen von N

Beweisen Sie: Die Menger aller endlichen Teilmengen von N ist abzählbar. Gilt das auch
für die Menge aller Teilmengen von N?
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Kapitel 9

Unendliche Reihen

9.1 Fourierreihen

Aufgabe 126: Entwicklung

Entwickle

u(x) =

{

0 in (0, π3 ) ∪ (2π3 , 2π)
π in (π3 ,

2π
3 )

in eine Fourierreihe nach den Funktionen cos nx, sin nx. Skiziere den Verlauf der ersten
Partialsummen.

9.2 geometrische Reihen

Aufgabe 127: Fibonacci-Koeffizienten

Entwickeln Sie die Funktion f = f(z) mit

f(z) =
1

1− z − z2

an der Stelle z0 = 0 in eine Potenzreihe
∑∞

n=0 anz
n. Zeigen Sie die rekursive Bildungsvor-

schrift
a0 = a1 = 1, an = an−1 + an−2 für n ≥ 2

(Fibonacci-Zahlen) und geben Sie die Koeffzienten an explizit an. Welchen Konvergenzra-
dius hat diese Potenzreihe?
Hinweis: Bestimmen Sie die Nullstellen z1, z2 des Nenners von f , schreiben Sie f in der
Form

f(z) =
a

z − z1
+

b

z − z2

mit geeigneten Zahlen a, b und benutzen Sie die Summenformel für die geometrische Reihe.
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Aufgabe 128: komplexe geometrische Reihe

Es sei z ∈ C mit Re z2 > −1
2 . Zeigen Sie die Konvergenz der Reihe

∞
∑

n=1

z2n

(1 + z2)n−1

und bestimmen Sie deren Summe.

Aufgabe 129: Potenzen der geometrischen Reihe

Man beweise unter Verwendung der Cauchyschen Produktreihe mit vollständiger Induktion
über l:

|z| < 1 =⇒ 1

(1− z)l
=

∞
∑

n=0

(

n+ l − 1
l − 1

)

zn =
∞
∑

n=0

(

n+ l − 1
n

)

zn.

Aufgabe 130: Volumen und Umfang der Koch-Schneeflocke

Ersetzt man in einem gleichseitigen Dreieck der Seitenlänge 1 die Kanten rekursiv gemäß
der Vorschrift

enstehen nacheinander die folgenden Figuren:

Berechnen Sie Umfang und Flächeninhalt aller dieser Figuren. Was passiert, wenn dieser
Prozess unendlich oft fortgeführt wird?

9.3 Großer Umordnungssatz

9.3.1 Cauchysche Produktreihe

Aufgabe 131: Potenzen der geometrischen Reihe

Man beweise unter Verwendung der Cauchyschen Produktreihe mit vollständiger Induktion
über l:

|z| < 1 =⇒ 1

(1− z)l
=

∞
∑

n=0

(

n+ l − 1
l − 1

)

zn =

∞
∑

n=0

(

n+ l − 1
n

)

zn.



Aufgabe 132: Übungen zur Quadratwurzel

1. Beweisen Sie unter Verwendung der Cauchyschen Produktreihe für z ∈ C, |z| < 1 die
Beziehung

1

1 + z
=

( ∞
∑

n=0

(

−1
2
n

)

zn

)2

.

2. Unter Verwendung von a) zeige man

√
2 =

7

5

∞
∑

n=0

(−1)n
(

−1
2
n

)

50−n.

Aufgabe 133: Endliche Zeilenreihen

Die Reihe
∑∞

n=0 an sei absolut konvergent und für n = 0, 1, . . . werde gesetzt:

bn =
1

2n+ 1
(a0 + 2a1 + . . .+ 2nan) .

Zeigen Sie, dass auch
∑∞

n=0 bn absolut konvergiert und

∞
∑

n=1

an =
∞
∑

n=1

bn

gilt. Hinweis: Wenden Sie den Großen Umordnungssatz an!



Aufgabe 134: Die Lambert-Reihe

1. Beweisen Sie: Die Lamberta-Reihe

L(z) =
∞
∑

n=1

zn

1− zn
, z ∈ C

konvergiert für |z| < 1 und divergiert für |z| > 1.

2. Zeigen Sie die Identität
∞
∑

n=1

zn

1− zn
=

∞
∑

n=1

d(n) zn,

wobei d(n) die Anzahl der (echten und unechten) Teiler von n bezeichnet.

3. Für welche z ∈ C konvergiert die rechte Reihe.

4. Beweisen Sie die Identität
( ∞
∑

n=1

1

n2

)2

=
∞
∑

n=1

d(n)

n2
.

aJohann Heinrich Lambert (* 26. August 1728 in Mülhausen (Elsass); † 25. September 1777 in Berlin)
war ein schweizerisch-elsässischer Mathematiker, Logiker, Physiker und Philosoph der Aufklärung, der u.
a. die Irrationalität der Zahl π bewies.

9.4 konkrete Reihen

Aufgabe 135: Binomische Reihe

Es sei α ∈ R. Die Binomial-Koeffzienten sind durch
(

α
0

)

:= 1 und

(

α
n

)

:=
α (α− 1) · · · (α− n+ 1)

n!
, (n ∈ N),

und die binomische Reihe als

Sα(z) :=
∞
∑

n=0

(

α
n

)

zn, (z ∈ C),

definiert. Zeigen Sie,

1. dass die Reihe für |z| < 1 konvergiert.

2. dass im Falle von α = m ∈ N die Reihe nur endlich viele Glieder hat und

Sm(z) = (1 + z)m

gilt.



Aufgabe 136: Definition und Berechnung von e.

Betrachte die rellen Folgen {an} und {sn} mit

an = (1 +
1

n
)n und sn =

n
∑

k=0

1

k!

Definiere e := limn→∞ sn. Warum ist dies wohldefiniert?

a) Zeige: an =
∑n

k=0

(

n
k

)

1
nk und an ≤ sn f.a. n ∈ N.

b) Folgere: {an} konvergiert und limn→∞ an ≤ e.

c) Zeige: Für alle m > n gilt

am ≥ 1 + 1 + (1− 1

m
)
1

2!
+ · · ·+ (1− 1

m
)(1− 2

m
) . . . (1− n− 1

m
)
1

n!
.

d) Folgere limn→∞ an ≥ sn f.a. n ∈ N und limn→∞ an ≥ e. Also limn→∞ an = e.

Diese Aufgabe zeigt limn→∞ an = limn→∞ sn = e, die sogenannte Eulersche Zahl.

Versuche die Zahl e jeweils mit an und sn zu approximieren. Wie groß muß jeweils n ∈ N

sein, um e mit fünf Dezimalen genau zu berechnen?

Aufgabe 137: Die Lambert-Reihe

1. Beweisen Sie: Die Lamberta-Reihe

L(z) =
∞
∑

n=1

zn

1− zn
, z ∈ C

konvergiert für |z| < 1 und divergiert für |z| > 1.

2. Zeigen Sie die Identität
∞
∑

n=1

zn

1− zn
=

∞
∑

n=1

d(n) zn,

wobei d(n) die Anzahl der (echten und unechten) Teiler von n bezeichnet.

3. Für welche z ∈ C konvergiert die rechte Reihe.

4. Beweisen Sie die Identität
( ∞
∑

n=1

1

n2

)2

=
∞
∑

n=1

d(n)

n2
.

aJohann Heinrich Lambert (* 26. August 1728 in Mülhausen (Elsass); † 25. September 1777 in Berlin)
war ein schweizerisch-elsässischer Mathematiker, Logiker, Physiker und Philosoph der Aufklärung, der u.
a. die Irrationalität der Zahl π bewies.



Aufgabe 138: Teleskopreihen

1. Entscheiden Sie über Konvergenz und bestimmen Sie gegebenenfalls die Summen der
Reihen

(a) S1 :=
∞
∑

n=1

1√
n+

√
n− 1

,

(b) S2 :=
1

1 · 3 +
1

2 · 4 +
1

3 · 5 + . . .,

(c) S3 :=
∞
∑

n=1

3n2 + 3n+ 1

n3(n+ 1)3
.

2. Zeigen Sie

∞
∑

n=0

1

(a+ n)(a+ b+ n)
=

1

b

(

1

a
+

1

a+ 1
+ . . .+

1

a+ b− 1

)

.

Welche Werte von a, b können dabei zugelassen werden?

9.5 Leibniz-Reihen

Aufgabe 139: Binomialkoeffizienten

Zeigen Sie mit Hilfe des Kriteriums von Leibniz, dass die Reihe

∞
∑

n=1

(

a
n

)

für jedes reelle a ∈ (−1, 0) konvergiert.

Aufgabe 140: Leibniz-Reihe

Untersuchen Sie auf Konvergenz bzw. Divergenz

∞
∑

k=1

(−1)k
ln k

k

Aufgabe 141: Monotonie erfoderlich

Untersuchen Sie die folgende Reihe auf Konvergenz / Divergenz !

∞
∑

n=1

(−1)n−1 2

(3 + (−1)n)n
.



9.6 Potenzreihen

Aufgabe 142: Fast harmonische Reihen

Es sei {an}n≥0 eine monoton fallende Nullfolge. Man zeige:

Die Summe

S =
∞
∑

n=0

anz
n

konvergiert für alle z mit |z| ≤ 1, mit Ausnahme von vielleicht z = 1!

Aufgabe 143: Identitätssatz für Potenzreihen

1. Die Potenzreihe P (z) :=
∞
∑

n=0

anz
n habe einen positiven Konvergenzradius ρ. In jedem

Punkt des Konvergenzkreises gelte P (z) = P (−z). Zeigen Sie, dass dann an = 0 für
alle ungeraden n gilt.

2. Gibt es Potenzreihen P (z) =
∞
∑

k=1

akz
k mit Konvergenzradius ρ > 1, die in den Punk-

ten z = 1, 12 ,
1
3 ,

1
4 , . . . der Reihe nach die Werte

i)
1

2
,
2

3
,
3

4
,
4

5
, . . . bzw. ii)

1

2
,
1

2
,
1

4
,
1

4
,
1

6
,
1

6
, . . .

annehmen?

9.6.1 Konvergenzradius

Aufgabe 144: fehlende Exponenten

Bestimmen Sie den Konvergenzradius der Potenzreihe

∞
∑

n=0

1

4n
(z − 5)2n+1.

Aufgabe 145: Formel von Hadamar

Bestimmen Sie das Konvergenzverhalten der Reihe:

∞
∑

n=0

anx
n

mit den Koeffizienten an = 3n (n gerade) und an = 5n (n ungerade) in Abhängigkeit von
der reellen Zahl x.



Aufgabe 146: Formel von Hadamar II

Bestimmen Sie das Konvergenzverhalten der Reihe:

∞
∑

n=0

anx
n

mit den Koeffizienten a2n = 3n und a2n+1 = 5n in Abhängigkeit von der reellen Zahl x.

Aufgabe 147: Konvergenzradiusbestimmung

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen in Potenzen von z:

a)
∞
∑

n=1

nn

n!
zn, b)

∞
∑

n=1

(n!)2

(2n)!
zn, c)

∞
∑

n=1

zn√
n
n , d)

∞
∑

n=0

(

n+ a
n

)

zn, (a ∈ C)

Aufgabe 148: Potenzfunktion vesus Exponentialfunktion

Bestimme den Konvergenzradius der Potenzreihe

∞
∑

n=1

(n2012 + 3n)zn

Aufgabe 149: Quotientenkriterium versus Wurzelkriterium

Bestimmen Sie den Konvergenzradius der Potenzreihe

∞
∑

n=0

(

1 + (−1)n +
1

n

)

(z − z0)
n.

Untersuchen Sie die Reihe

1. zunächst mit dem Quotientkriterium,

2. dann mit dem Wurzelkriterium und

3. benutzen Sie zuletzt die Formel für den Konvergenzradius.



Aufgabe 150: Satz von Cauchy-Hadamar

Es sei ρ > 0 der Konvergenzradius der Potenzreihe

S :=

∞
∑

n=0

an z
n.

Welchen Konvergenzradius haben dann die Potenzreihen

S1 :=
∞
∑

n=0

an n! z
n, S2 :=

∞
∑

n=0

an
n!
zn, S3 :=

∞
∑

n=0

an n
m zn, S4 :=

∞
∑

n=0

an
nm

zn (m ∈ N)?

9.7 Quotientenkriterium

Aufgabe 151: Konvergenzuntersuchung

Untersuchen Sie die folgenden drei Reihen auf Konvergenz oder Divergenz

a)
∞
∑

n=1

(n!)2

(2n)!
, b)

∞
∑

n=1

2n n!

nn
, c)

∞
∑

n=1

3n n!

nn
.

9.8 Vergleichskriterium

Aufgabe 152: Reihen mit der Eulerschen Zahl

Untersuchen Sie die Konvergenz der folegnden Reihen

a)
∞
∑

n=1

(

e−
(

1 +
1

n

)n)

b)
∞
∑

n=1

(

e−
(

1 +
1

n

)n)2

Hinweis: Vergleichskriterium

Aufgabe 153: gebrochen rationale Summanden

Es seien a, b beliebige positive (reelle) Zahlen. Für welche (rationalen) Werte von s, t kon-
vergiert die unendliche Reihe

∞
∑

n=1

a+ ns

b+ nt
?



9.9 weitere Summationsverfahren

Aufgabe 154: Partielle Summation

Manchmal kann man die sogenannte partielle Summation für Konvergenzuntersuchun-
gen von unendlichen Reihen benutzen: Sind a1, . . . , an, b1, . . . , bn ∈ C und ist

Am :=
m
∑

k=1

ak, m = 1, . . . .n, dann gilt

n
∑

k=1

akbk = Anbn +
n−1
∑

k=1

Ak(bk − bk+1).

1. Beweisen Sie diese Formel.

2. Zeigen Sie damit: Hat die reelle, unendliche Reihe
∑∞

n=1 an beschränkte Partialsum-
men und ist die reelle Folge {bn}n∈N eine monotone Nullfolge, dann konvergiert die
Reihe

∑∞
n=1 anbn.



Kapitel 10

Ungleichungen

10.1 Bernoulli-Ungleichung

Aufgabe 155: Bernoulli-Ungleichung

Es seien a ∈ R, a 6= 0, a 6= 1, und x ≥ −1. Benutzen Sie den Mittelwertsatz um die
folgenden Ungleichungen zu zeigen:

(1 + x)a ≤ 1 + ax wenn 0 < a < 1

(1 + x)a ≥ 1 + ax wenn a < 0 oder a > 1.

Aufgabe 156: Bernoulli-Ungleichung für rationale Exponenten

Beweisen Sie die folgenden beiden Varianten der Bernoullischen Ungleichung. Dazu sei
x > −1 eine reelle Zahl und a eine rationale Zahl.

1. Es gilt (1 + x)a ≥ 1 + ax für a ≥ 1.

2. Es gilt (1 + x)a ≤ 1 + ax für 0 < a < 1.

Hinweis: Benutzen Sie den Satz über das geometrische und das arithmetische Mittel.

10.2 Cauchy-Schwarzsche Ungleichung

Aufgabe 157: Disjunkte Kreise

Es seien x, y reelle Zahlen, für die

(x− 5)2 + (y − 7)2 = 4

gilt. Zeigen Sie:
x2 + y2 > 36.

65



Aufgabe 158: Gegebene Summe und Quadratsumme

Es sei

x1 + x2 + x3 + x4 + x5 = 10

x21 + x22 + x23 + x24 + x25 = 25

Zeigen Sie, dass dann 0 ≤ xi ≤ 4, i = 1, . . . , 5 gilt.
In welchen Fällen können dabei Gleichheitszeichen auftreten?

Aufgabe 159: Lagrangesche Identität

Es sei n ∈ N und zk, wk ∈ C, k = 1, . . . , n. Beweisen Sie die sogenannte Lagrangesche
Identität

∣

∣

∣

∣

∣

n
∑

k=1

zkwk

∣

∣

∣

∣

∣

2

=
n
∑

k=1

|zk|2
n
∑

k=1

|wk|2 −
∑

1≤l<k≤n

|zlw̄k − zkw̄l|2

und daraus folgend die Cauchy-Schwarzsche Ungleichung für komplexe Zahlen

∣

∣

∣

∣

∣

n
∑

k=1

zkwk

∣

∣

∣

∣

∣

2

≤
n
∑

k=1

|zk|2
n
∑

k=1

|wk|2 .

10.3 Dreiecksungleichung

Aufgabe 160: Abschätzung zusammengesetzter Größen

Es seien a, b ∈ R, so dass |a+ 1| ≤ 10−2 und |b− 5| ≤ 3 · 10−2.

Schätze die Größen |a+ b− 4|, |ab2 + 25|, |(b/a) + 5| und |a
√
b+

√
5| ab.

Aufgabe 161: Abschätzung nach der Dreiecksungleichung

Es seien a, b ∈ R gegeben mit |a− 3| ≤ 3 · 10−3, |b+ 2| ≤ 2 · 10−3.
Schätzen Sie die folgenden Ausdrücke ab:

a) |a+ b− 1| , b) |ab+ 6| , c)
∣

∣a2b+ 18
∣

∣ , d)

∣

∣

∣

∣

a

b
+

3

2

∣

∣

∣

∣

, e)
∣

∣

∣

√
a−

√
3
∣

∣

∣ .



Aufgabe 162: Stetigkeit der Wurzelfunktion

1. Beweisen Sie die folgende Ungleichung

a, b ≥ 0 =⇒
∣

∣

∣

√
a−

√
b
∣

∣

∣
≤
√

|a± b| ≤ √
a+

√
b (W)

2. Zeigen Sie mit Hilfe von a), dass die Funktion f(x) =
√
x im ihrem Definitionsbereich

stetig ist.

3. Ist f in ihrem Definitionsbereich gleichmäßig stetig?

10.4 Mittelungleichung

Aufgabe 163: Zyklisches Produkt

Gegeben seinen n positive reelle Zahlen x1, . . . , xn.

1. Sei y1, . . . , yn eine beliebige Umordnung der Zahlen x1, . . . , xn. Man beweise

n
∑

k=1

xk
yk

≥ n.

2. Sei xk+1 := x1 gesetzt. Man beweise

n
∑

k=1

xk+1

xk
≤

n
∑

k=1

(

xk
xk+1

)n

.



10.5 Rechnen mit Ungleichungen

Aufgabe 164: Lösen von Ungleichungen

1. Bestimmen Sie alle reellen Zahlen x 6= 1, für die gilt:
∣

∣

∣

∣

x

x+ 1

∣

∣

∣

∣

>
x

x+ 1
.

2. Bestimmen Sie alle reellen Zahlen x, für die gilt

||x+ 1| − |x+ 3|| < 1.

3. Es sei p > 0 eine gegebene reelle Zahl. Bestimmen Sie in Abhängigkeit von p alle
reellen Zahlen x 6= 0 mit

x

p
− 2p

x
< 2.

4. Es sei p eine gegebene reelle Zahl. Bestimmen Sie in Abhängigkeit von p alle reellen
Zahlen x mit

p x (3− x) > 7 p− 5.

5. Bestimmen Sie alle reellen Zahlen x mit

x2 − 4x+ 3 >
1

2
x+ 1.

Hinweis: Es ist lehrreich, sich mit Hilfe eines Zeichenprogramms (z.B. dem freien Gnuplot)
eine Vorstellung vom Verlauf der Graphen der jeweiligen Funktionen zu verschaffen!

10.6 Tschebyscheffsche Ungleichung

Aufgabe 165: Tschebyscheffsche Ungleichung

1. Zeigen Sie die folgende Identität: Für a1, a2, ..., an ∈ R und b1, b2, ..., bn ∈ R gilt

n
∑

i,k=1

(ai − ak)(bi − bk) = 2

{

n
n
∑

k=1

akbk −
(

n
∑

k=1

ak

)(

n
∑

k=1

bk

)}

2. Leiten Sie aus a) die Tschebyscheffsche Ungleichung her: Ist a1 ≥ a2 ≥ ... ≥ an und
b1 ≥ b2 ≥ ... ≥ bn, so gilt

a1 + a2 + ...+ an
n

· b1 + b2 + ...+ bn
n

≤ a1b1 + a2b2 + ...+ anbn
n



10.7 weitere Abschätzungen

Abschätzung von 1/
√
Aufgabe166 : n

1. Beweisen Sie für jede natürliche Zahl n

2
(√
n+ 1−√

n
)

<
1√
n
< 2

(√
n−

√
n− 1

)

.

2. Bestimmen Sie den größten ganzen Anteil ⌊x⌋ der Zahl

x =
1000000
∑

k=1

1√
k
= 1 +

1√
2
+

1√
3
+

1√
4
+ . . .+

1√
1000000

.

Hinweis: Für eine reelle Zahl x ist der größte ganze Anteil die eindeutig bestimmte
ganze Zahl ⌊x⌋ =: m mit m ≤ x < m+ 1. Benutzen Sie die Ungleichung aus a).
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Kapitel 11

Ebene Probleme

Aufgabe 167: Disjunkte Kreise

Es seien x, y reelle Zahlen, für die

(x− 5)2 + (y − 7)2 = 4

gilt. Zeigen Sie:
x2 + y2 > 36.
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Kapitel 12

Kegelschnitte

Aufgabe 168: Kegelhalbierung

Ein gerader Kreiskegel mit Grundkreis-
radius r und Höhe h wird durch einen
ebenen Schnitt im Winkel α zur Grund-
fläche in zwei volumengleiche Teile geteilt.
(α sei dabei natürlich echt kleiner als
der Mantelwinkel des Kegels, so dass als
Schnittfläche eine Ellipse entsteht, de-
ren Rand ganz auf dem Kegelmantel liegt.)

Wie groß ist die Schnittfläche und in wel-
cher Höhe schneidet die Schnittebene die
Kegelachse?

2

1

-2
-1 00

0
1

2

2

-1

4

-2

6

8

10
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Kapitel 13

Kugelberechnungen

Aufgabe 169: Kugel mit Loch

In eine Kugel vom Radius r wird ein zylin-
drisches Loch vom Radius a so gebohrt, dass
die Zylinderachse durch den Kugekmittelpunkt
geht. Die Höhe des Loches beträgt 1 m.

Wie groß ist das Volumen des Restkörpers?

a

h

r
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Kapitel 14

Polyeder

Aufgabe 170: Ortsvektorsumme im regulären Polyeder

Seien M der Mittelpunkt und Pi, i = 1, . . . , n die Eckpunkte eines regulären Polyeders.
Man zeige für alle n ∈ N

n
∑

k=1

−−−→
MPk = ~0.
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Kapitel 15

Metrik und Norm

Aufgabe 171: Beschränkte Metrik

1. Es sei(M,d) einmetrischer Raum mit dem Abstand d :M ×M → R

. Zeigen Sie, dass dann auch d1 :M ×M → R mit

d1(x, y) =
d(x, y)

1 + d(x, y)

eine Metrik auf M ist.
(Man beachte, dasd stets d1(x, y) < 1 ist.)

2. Erzeugt die Metrik d1 die gleiche Topologie (d. h. das gleiche System der offenen und
abgeschlossenen Mengen) auf M wie d ?

Aufgabe 172: Französische Eisenbahn-Metrik (Alle Züge fahren über Paris.)

Es sei d : R2 × R2 → R+ eine Metrik auf dem Raum R2.
Für zi = (xi, yi) ∈ R2, i = 1, 2 sei

d̃(z1, z2) =

{

d(z1, z2) falls x1 y2 = x2 y1

d(z1, 0) + d(0, z2) sonst
.

Man gebe eine geometrische Deutung der Bedingung x1 y2 = x2 y1 an und untersuche, ob
d̃ ebenfalls eine Metrik auf dem Raum R2 ist.
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Aufgabe 173: Matrixnorm

Im Vektorraum V der reellen (n× n)-Matrizen A = (aij) werde gesetzt:

‖A‖ := max
i,j=1,...,n

|aij |.

1. Prüfen Sie die Normeigenschaften von ‖·‖ nach!

2. Ist ‖·‖ eine multiplikative Matrixnorm auf V , d.h. gilt

‖AB‖ ≤ ‖A‖ · ‖B‖

für beliebige Matrizen A,B aus V ? (Beweis oder Gegenbeispiel!)

3. Es sei M die Menge der invertierbaren unteren Dreiecksmatrizen aus V . Ist M eine
offene Menge im normierten Raum V, ‖ · ‖? Bestimmen Sie alle Randpunkte von M !

Normen im RAufgabe174:2

1. Untersuchen Sie, ob folgende Ausdrücke Normen im R2 sind und beschreiben Sie
gegebenenfalls das Aussehen des Einheitskreises.

(a) ‖(x1, x2)‖ = |x1 − x2|+ |x1|
(b) ‖(x1, x2)‖ = 2|x1|+ 3|x2|
(c) ‖(x1, x2)‖ = |x1 − x2|

2. Bestimmen Sie auch die zugehörigen Matrixnormen.

Aufgabe 175: reziproke Metrik in N

Auf der Menge der natürlichen Zahlen werde gesetzt:

d(n,m) =
|n−m|
nm

für n,m ∈ N.

1. Zeigen Sie, dass d eine Abstandsfunktion auf (N, d) ist.

2. Beschreiben Sie alle offenen, alle abgeschlossenen und alle kompakten Teilmengen von
(N, d).

3. Ist der metrische Raum (N, d) vollständig?
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Kapitel 16

Gaußsche Integralformel

Aufgabe 176: Konjugierte Formel

Man berechne das Integral

I =

∮

|z|=1

dz

z̄ − z0

über dem Einheitskreis!
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Kapitel 17

Gaußscher Integralsatz

Aufgabe 177: Fresnelschen Integrale

Berechnen Sie unter Verwendung des reellen Integrals

∫ ∞

0
e−t2 dt =

1

1

∫ ∞

0
e−uu−1/2 du =

Γ(1/2)

2
=

√
π

2

die sogenannten Fresnelschen Integrale

Ic :=

∫ ∞

0
cos(t2) dt und Is :=

∫ ∞

0
sin(t2) dt,

indem Sie die in ganz C holomorphe Funktion f(z) = e−z2 über den Rand des Kreissektors

S =
{

z ∈ C | |z| < R; 0 < arg(z) <
π

4

}

integrieren, den Cauchyschen Integralsatz anwenden und schließlich den Grenzübergang
R→ ∞ vollziehen.
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Kapitel 18

komplexe Zahlen

18.1 Rechnen mit komplexen Zahlen

Aufgabe 178: Betrag und Argument

Berechnen Sie von den folgenden komplexen Zahlen jeweils den Betrag und (ein) Argument:

a) i2016, b)
3 + 4i

1− 2i
, c) (1 + i)17 − (1− i)17, (1− i)n, n ∈ Z.

Aufgabe 179: Beträge u. ä.

Berechnen Sie die folgenden Ausdrücke mit komplexen Zahlen:

1. |2z2 − 3z1|2,

2. |z1z̄2 + z2z̄1|,

3. Im

(

z1z2
z3

)

,

wobei z1 = 1 − i, z2 = −2 + 4i und z3 =
√
3 − 2i ist. (Mit z̄ wird die zu z konjugiert

komplexe Zahl bezeichnet, mit i die imaginäre Einheit.)

Aufgabe 180: Geradengleichungen

Die folgenden drei Teilmengen G0, G+, G− ⊂ C veranschauliche man sich in der Gaußschen
Zahlenebene, d. h. man überlege sich, welche geometrischen Objekte dadurch beschrieben
werden. Dazu seien a, b ∈ C, b 6= 0 und

G0 :=

{

z ∈ C | Im
(

z − a

b

)

= 0

}

,

G+ :=

{

z ∈ C | Im
(

z − a

b

)

> 0

}

,

G− :=

{

z ∈ C | Im
(

z − a

b

)

< 0

}

.
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Aufgabe 181: Gleichungen und Ungleichungen

Finden Sie alle Zahlen z ∈ C, die den folgenden Bedingungen genügen

1. Re z3 = 27,

2. z2 + (2 + i)z + 1 + i = 0,

3. |z − i|+ |z + 2| < 3.

4. Untersuchen Sie, für welche reellen Zahlen a ≥ 1 die Gleichung

z + a |z + 1|+ i = 0

komplexe Lösungen besitzt und bestimmen Sie diese.

Aufgabe 182: Identitäten mit Beträgen

Beweisen Sie die folgenden drei Behauptungen:

1. Für z ∈ C gilt |z + 1| > |z − 1| genau dann, wenn Re z > 0 ist.

2. Für z ∈ C, z 6= 0 gilt Re
(

z + 1
z

)

= 0 genau dann, wenn Re z = 0 ist.

3. Für z ∈ C, z 6= 0 gilt Im
(

z + 1
z

)

= 0 genau dann, wenn Im z = 0 oder |z| = 1 ist.

Aufgabe 183: komplexe Wurzeln

Berechnen Sie die Quadratwurzeln aus 5 + 7i und
√
2 (1 + i).

Aufgabe 184: Polynome

1. Bestimmen Sie alle komplexen Lösungen z der folgenden Gleichungen:

(z − 3i)6 + 64 = 0, z2 − z + iz − i = 0.

2. Es sei P = P (z) das folgende Polynom fünften Grades:

P (z) = z5 + z4 − 2z3 + 2z2 + 4z.

Berechnen Sie P (1 + i), P (2 + i) und zerlegen Sie P in Linearfaktoren!

Aufgabe 185: Unimodularität

Es seien a, b komplexe Zahlen mit |a| 6= |b| und z eine unimodulare komplexe Zahl. Beweisen
Sie, dass dann b̄z + a 6= 0 ist und die komplexe Zahl

w :=
(

āz + b
)

/
(

b̄z + a
)

wieder unimodular ist.



Aufgabe 186: Vereinfachung

Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahl:

(1 + i)4

(1− i)3
+

(1− i)4

(1 + i)3
.





Kapitel 19

Möbiustransformationen

19.1 Spiegelung am Kreis

Aufgabe 187: Transformation auf Kreisringe

Wie sieht das Bild vom
M := {z ∈ C|1 < |z + i| < 2}

unter der Abbildung f(z) = 1
z aus?

Aufgabe 188: Transformation auf Kreisringe

1. Wie kann man durch eine Möbiustransformation das Gebiet zwischen zwei nichtkon-
zentrischen und durchschnittsleeren Kreislinien in der Gaußschen Zahlenebene auf ein
Gebiet zwischen zwei konzentrischen Kreislinien abbilden?

2. Existiert eine Möbiustransformation, die das Gebiet
G := {z ∈ C | |z − 1| > 1, |z| < 8} auf den Kreisring R = {z ∈ C | 1 < |z| < 2}
abbildet?

3. Geben Sie alle Möbiustransformationen an, bei denen der innere Randkreis des Bildes
von G der Einheitskreis ist.
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Kapitel 20

Residuensatz

20.1 Berechnung reeller Integrale

Aufgabe 189: Residuensatz

Berchnen Sie das Integral
∫ ∞

−∞

cosx

1 + x2
dx

mit Hilfe eines komplexen Integrals.
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Kapitel 21

Einführende Übungen

21.1 DGls zu Kurvenscharen

Aufgabe 190: DGl zu zweiparametriger Parabelschar

Es sei folgende 2-parametrige Schar von Parabeln im R2 gegeben:

{

(x, y) ∈ R2 | y = a (x− b)2, a, b ∈ R
}

.

Bestimmen Sie eine Differentialgleichung 2. Ordnung, welche diese Parabeln als Lösungs-
kurven besitzen.

Aufgabe 191: Einparametrige Geradenschar

Es sei folgende 1-parametrige Geradenschar im R2 gegeben:

{

(x, y) ∈ R2 | y = 2c (x− c) + c2, c ∈ R
}

.

• Wie viele Kurven der Schar gehen durch einen gegebenen Punkt (x0, y0) ∈ R2 ?

• Geben Sie eine Differentialgleichung 1. Ordnung an, welche diese Geraden als Lö-
sungskurven besitzen.

21.2 Einfache Anfangswertprobleme

Aufgabe 192: Anfangs- und Randwertprobleme

• Bestimmen Sie die Lösung des Anfangswertproblems:

y(3)(x) = sin 2x, (x ∈ [0, 1]), y
(π

4

)

=
π2

32
, y′

(π

4

)

=
π

4
, y′′

(π

4

)

= 1.

• Bestimmen Sie die Lösung des Randwertproblems:

y′′(x) = x3 (x ∈ [0, 1]), y(0) = y(1) = 0
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Aufgabe 193: Anfangswertproblem zu einer Differentialgleichung n-ter Ordnung

Es seien n ∈ N, x0 ∈ R und y0, y1, . . . , yn−1 ∈ R gegeben. Bestimmen Sie die Lösung des
Anfangswertproblems:

y(n)(x) = ex, (x ∈ R), y(x0) = y0, y
′(x0) = y1, . . . , y

(n−1)(x0) = yn−1.



Kapitel 22

erster Ordnung

22.1 Analytische Lösungen

Aufgabe 194: Potenzreihenansatz

Für die Lösung des Anfangswertproblems

y′ = x3 + y3, y(0) = 1

bestimme man die ersten vier Glieder der Potenzreihenentwicklung. Man gebe außerdem
eine Abschätzung für den Konvergenzradius an.

22.2 direkt lösbare Typen

22.2.1 Ähnlichkeitsdifferentialgleichung

Aufgabe 195: Bahn einer Ente

Ein Fluss strömt im Streifen {(x, y) ∈ R2 :
0 ≤ x ≤ 1} mit der Wassergeschwindigkeit
v = (0, v(x)). Zur Zeit t = 0 startet eine
Ente im Punkt (1, 0) und schwimmt mit der
konstanten Relativgeschwindigkeit w immer
in Richtung auf ihren Zielpunkt (0, 0).
Stellen Sie eine Differentialgleichung für die
Bahnkurve der Ente auf und diskutieren Sie
die Lösung für für konstante v und für den
Fall v(x) = 2x(x− 1).

Erreicht die Ente immer ihr Ziel?

v

w
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Aufgabe 196: Orthogonale Trajektorien

Man bestimme die orthogonalen Trajektorien zu der Kurven-
schar x2 + y2 = 2cx

–4

–2

2

4

y

–8 –6 –4 –2 2 4 6 8
x

Aufgabe 197: Parabolspiegel

Welche Form hat ein Spiegel,
der von einem Punkt ausgehende
Strahlen parallelisiert?

OM x

P(x,y)

Aufgabe 198: Rechte Seite ist Funktion eines Quotienten aus Linearausdrücken

1. Zeigen Sie, dass sich Differentialgleichungen der Form

y′ = f

(

a1x+ b1y + c1
a2x+ b2y + c2

)

mit D = det

(

a1 b1
a2 b2

)

im Falle D = 0 auf eine Differentialgleichung mit getrennten Variablen und im Falle
D 6= 0 auf eine Ähnlichkeits-Differentialgleichung bzw. eine Euler-homogene Differen-
tialgleichung zurückführen lassen.

2. Bestimmen Sie die allgemeine Lösung der Differentialgleichung

y′ =
x+ y + 1

x+ 2
− exp

(

x+ y + 1

x+ 2

)

.



22.2.2 Bernoullische Differentialgleichung

Aufgabe 199: Anfangswertprobleme für Bernoullische Differentialgleichungen

• Bestimme die allgemeine Lösung der Bernoullischen Differentialgleichung

y′ = −2y + y2ex.

• Löse zur Differentialgleichung aus a) die Anfangswertprobleme mit:

y(0) = 0 bzw. y(0) = 1 bzw. y(0) = −1

und bestimme jeweils das maximale Existenzintervall der Lösung.

Aufgabe 200: Bernoullische Differentialgleichung

Eine Differentialgleichung der Form y′ = f0(x)y
α+f1(x)y mit gegebenen Funktionen f0, f1 :

(a, b) → R und α ∈ R \ {0, 1}a heißt eine Bernoullische Differentialgleichung.
Durch die Transformation y(x) = zβ(x) lässt sich eine solche Differentialgleichung auf eine
lineare Differentialgleichung der Form

z′ = a(x) z + s(x)

für z zurückführen.

1. Bestimmen Sie β, a(x) und s(x) aus α, f0(x) und f1(x).

2. Lösen Sie das Anfangswertproblem

y′ = −y2 + 1

x
y, y(1) =

2

3
.

aFür α = 0 bzw. α = 1 ist die Gleichung bereits eine lineare inhomogene bzw. homogene Differential-
gleichung.



Aufgabe 201: Bernoullische Differentialgleichung

Es seien f0, f1 stetige reelle Funktionen in einem Intervall (a, b) und α ∈ R. Dann heißt die
Differentialgleichung

y′ = f0(x)y
α + f1(x)y

eine Bernoullische Differentialgleichung. Für α = 0 entsteht eine inhomogene lineare und für
α = 1 eine homogene lineare Differentialgleichung, die nach Rezept gelöst werden können.

1. Zeigen Sie, dass im Fall α 6= 1 und y > 0 durch die Substitution z = y1−α eine lineare
Differentialgleichung für z entsteht.

2. Beweisen Sie folgenden Satz: Sind f0, f1 in (a, b) stetig und α ∈ R \ {1}, dann besitzt
das Anfangswertproblem

y′ = f0(x)y
α + f1(x)y, y(x0) = y0, x0 ∈ (a, b), y0 > 0

eine eindeutig bestimmte Lösung in einer Umgebung von x0. Ist α ∈ Z \ {1}, dann
gilt das auch für y0 < 0.

3. Bestimmen Sie die allgemeine Lösung der Differentialgleichung

4y′ sinx = −y
(

1 + y4
)

+ y5 cosx.

22.2.3 Exakte Differentialgleichung

Aufgabe 202: Anfangswertproblem

• Teste die folgende Differentialgleichung auf Exaktheit

y2 − x− y sinx+ (2x y + cosx) y′ = 0.

• Löse das Anfangswertproblem zu a) mit y(π) = 0 .

Aufgabe 203: Eulerscher Multiplikator m(x)

Bestimmen Sie für die Differentialgleichung

y′ = −y
3 + 3x2y + 6xy

3(x2 + y2)

einen nur von x abhängigen Eulerschen Multiplikator. Bestimmen Sie dann die Funktion
F = F (x, y), deren Niveaulinien mit den Lösungskurven der Differentialgleichung überein-
stimmen. Für welche Werte (x0, y0) ∈ R2 ist das Anfangswertproblem mit den Anfangswer-
ten y(x0) = y0 in einer Umgebung von x0 eindeutig lösbar?



Aufgabe 204: Eulerscher Multiplikator

Bestimmen Sie für die folgende Differentialgleichungeinen Eulerschen Multiplikator der
Form λ = λ(x2 + y2) und bestimmen Sie damit die allgemeine Lösung von

(y2 + x2 + x) y′ = y.

Aufgabe 205: Eulerscher Multiplikator m(xαyβ)

Bestimmen Sie für die Differentialgleichung

y′ = − y2 − xy

2xy3 + xy + x2

einen Eulerschen Multiplikator m durch einen Ansatz in der Form

m(x, y) = xαyβ

mit geeigneten α, β. Lösen Sie damit die Differentialgleichung.

Aufgabe 206: lieare Differentialgleichung als exakte Differentialgleichung lösen

Bestimmen Sie einen Eulerschen Multiplikator für eine lineare Differentialgleichung

y′ + f(x)y = g(x)

und lösen Sie die zugehörige exakte Differentialgleichung.

22.2.4 Riccatische Differentialgleichung

Aufgabe 207: Riccatische Differentialgleichung

Beweisen Sie: Sind y = yi(x), i = 1, . . . , 4 vier verschiedene Lösungen einer Riccatischen
Differentialgleichung

y′ = f0(x)y
2 + 2f1(x)y + f2(x),

im Intervall (a, b), dann ist ihr Doppelverhältnis konstant, d. h. es gilt für alle x ∈ (a, b):

y1(x)− y3(x)

y2(x)− y3(x)
:
y1(x)− y4(x)

y2(x)− y4(x)
= const.



Aufgabe 208: Riccatische Differentialgleichung

1. Zeigen Sie: Ist f : (a, b) → R stetig und z = z(x) eine Lösung der Riccatischen
Differentialgleichung in Normalform z′ = z2 − f(x), so ist y = y(x) genau dann
eine von z verschiedene Lösung dieser Differentialgleichung, wenn u = 1/(y − z) der
linearen Differentialgleichung u′ + 2zu + 1 = 0 genügt. Also: Kennt man von einer
Riccatischen Differentialgleichung eine spezielle Lösung, dann kann man alle weiteren
Lösungen durch elementare Integrationen bestimmen.

2. Bestimmen Sie auf dem in a) beschriebenen Wege die allgemeine Lösung der Riccati-
schen Differentialgleichung

z′ = z2 − 1

4
.

Aufgabe 209: Riccatische Differentialgleichung

Lösen Sie die Riccatische Differentialgleichung

y′ = −(x+ 1) y2 − y +
3− x

4x2
.

Hinweis: Versuchen Sie zunächst mit dem Ansatz ys(x) = a xα eine spezielle Lösung der
Differentialgleichung zu finden

Aufgabe 210: Riccatische Differentialgleichung

Eine Differentialgleichung der Form

y′ = a(x)y + b(x)y2 + s(x),

von der eine spezielle Lösung ys(x) bekannt ist, lässt sich durch die Transformation y(x) =
z(x) + ys(x) auf eine Bernouliische Differentialgleichung der Form

z′ = p(x)z + q(x)z2

zurückführen.

1. Bestimmen Sie p(x) und q(x) in Abhägingkeit von a/x), b(x), s(x) und ys(x).

2. Bestimmen Sie eine spezielle Lösung der Riccatischen Differentialgleichung

y′ = −
(

2x
√
x+

1

x

)

y + xy2 +
3

2
√
x
+ x2

mit dem Ansatz ys(x) = a xα.

3. Transformieren Sie die Riccatische in ein Bernoullische Differentialgleichung.

4. Geben Sie die allgemeine Lösung der Riccatischen Differentialgleichung an.



Aufgabe 211: Riccatische Differentialgleichung

Beweisen Sie: Ist die Funktion y = y(x) im Intervall (a, b) eine Lösung der Riccatischen
Differentialgleichung

y′ = f0(x)y
2 + 2f1(x)y + f2(x),

so ist die Funktion u = u(x) mit

u(x) = exp

(

−
∫ x

x0

f0(t)y(t) dt

)

, x, x0 ∈ (a, b)

eine Lösung der linearen homogenen Differentialgleichung zweiter Ordnung

f0(x)u
′′ −

(

f ′0(x) + 2f0(x)f1(x)
)

u′ + f20 (x)f2(x)u = 0.

Ist umgekehrt u = u(x) eine nicht verschwindende Lösung dieser Differentialgleichung,
dann ist z = −u′/(f0(x)u) eine Lösung der Riccatischen Differentialgleichung. (f0 sei in
(a, b) stetig differenzierbar mit f0(x) 6= 0, x ∈ (a, b).

Aufgabe 212: Riccatische Differentialgleichung

Eine Differentialgleichung der Form

y′ = f0(x)y
2 + f1(x)y + f2(x)

mit gegebenen Funktionen f0, f1, f2 : (a, b) → R, f0(x) 6= 0 heißt eine Riccatische Differen-

tialgleichung.

1. Es seien f0 zweimal stetig differenzierbar, f1 einmal stetig differenzierbar und f2
stetig. Bestimmen Sie Funktionen g = g(x) und f = f(x), so dass die Transformation
z = f0y + g die Riccatische Differentialgleichung in die Normalform z′ = z2 − f(x)
überführt.

2. Berechnen Sie die Normalform der Riccatischen Differentialgleichung

y′ = y2 − (2x+ 1)y + (1 + x+ x2).

3. Geben Sie die allgemeine Lösung der ursprüglichen Riccatischen Differentialgleichung
an.



22.2.5 Trennung der Variablen

Aufgabe 213: Eine Aufgabe mitten aus dem fröhlichen (Studenten-)Leben.

Eine gewisse Menge an Bier wird in einer stehenden kreiszylinderförmigen Tonne vom Ra-
dius r bzw. einem kreiskegelstumpfförmigen Behälter mit dem Radius r am Boden und
Radius R > r in der Höhe H > 0 gelagert. In die Böden wird jeweils ein Zapfhahn mit
dem gleichen Querschnitt eingeschlagen. Aus welchem Behälter ist die gleiche Menge Bier
bei geöffnetem Zapfhahn schneller vollständig ausgelaufen? Hinweis: Benutzen Sie Torricel-
li’s Ausflußgesetz (benannt nach dem Mathematiker und Physiker Evangelista Torricelli,
1608-1647), wonach die Ausflußgeschwindigkeit v einer idealen Flüssigkeit (Bier?) durch
eine nach unten gerichtete Öffnung sich proportional zur Höhe h der Flüssigkeit verhält,
genauer v =

√
Gh,G Gravitationskonstante. Leiten Sie daraus eine Differentialgleichung

für die Flüssigkeitshöhe h(t) zur Zeit t in beiden Fällen ab und diskutieren Sie diese.

Aufgabe 214: Die Kettenlinie

Leiten Sie die Differentialgleichung der
Kettenlinie her, bestimmen Sie deren
Lösungen und diskutieren Sie dabei
die verschiedenen Fälle!

Aufgabe 215: Nicht eindeutige Lösung des AWP

Das Anfangswertproblem

y′ =
√
y in [0,∞), y′(0) = 0

besitzt die triviale Lösung y ≡ 0. Existiert zu jedem λ > 0 auch eine Lösung dieses An-
fangswertproblems mit

y(x) = 0 für x ∈ [0, λ] und y(x) > 0 für x ∈ (λ,∞)?



Aufgabe 216: Rechte Seite ist Funktion eines lienaren Ausdrucks

1. Zeigen Sie, dass sich Differentialgleichungen der Form

y′ = f(ax+ by + c)

durch die Ersetzung z(x) = ax+by(x)+c auf eine Differentialgleichung mit getrennten
Variablen zurückführen lässt.

2. Berechnen Sie die allgemeine Lösung der Differentialgleichung

y′ = 1− 2

x− 2y + 5
.

Aufgabe 217: Differentialgleichung der Traktrix

Bestimmen Sie die differenzierbaren Kurven y = y(x), y(x) > 0, deren Tangenten
zwischen dem Berührungspunkt mit der Kurve und dem Schnittpunkt mit der x-
Achse eine konstante Länge a > 0 haben. Eine solche Kurve heißt auch Ziehkurve

oder Traktrix und entsteht, wenn man bei geradliniger Bewegung auf der x-Achse einen
Gegenstand hinter sich herzieht, der zu Beginn der Bewegung nicht auf der Ziehgeraden lag.

Diese Aufgabe soll von G.W. Leibniz (1646 - 1716) stammen, der die Bewegung seiner im
Punkte (0, a) liegenden silbernen Taschenuhr verfolgte, als er das am andere, im Koordina-
tenursprung befindliche Ende der Uhrkette entlang der x-Achse verschob.

22.3 implizite Dgl

22.3.1 Auflösung nach x möglich

Aufgabe 218: Auflösung nach x möglich

Lösen Sie für die implizite Differentialgleichung

(y′)3 + y′ − x = 0

das Anfangswertproblem y(1) = 1 und skizieren Sie die Lösung.

22.3.2 Auflösung nach y möglich

Aufgabe 219: Auflösung nach y möglich

Lösen Sie für die implizite Differentialgleichung

y = x2ey
′

+ x y′

das Anfangswertproblem y(1) = 1 und skizieren Sie die Lösung.



22.3.3 Clairautsche DGL

Aufgabe 220: Theorie der Clairautschen Differentialgleichungen.

Eine reelle Funktion g = g(t) sei für t ∈ [a, b] zweimal stetig differenzierbar mit g′′(t) 6= 0.
Durch y = xt+ g(t), t ∈ [a, b] wird eine Schar von Geraden im R2 gegeben.

1. Zeigen Sie: Es gibt eine ebene Kurve, deren Tangenten Geraden aus dieser Schar sind;
man nennt die Kurve deshalb auch Einhüllende der Geradenschar.

2. Die Differentialgleichung y = xy′+g(y′) heißt eine Clairautsche Differentialgleichung.

Zeigen Sie: Die Geradenschar und die Kurve von a) sind Lösungen dieser Differenti-
algleichung.

Aufgabe 221: Ein Beispiel zur Clairautschen Differentialgleichung

Man löse die Clairautsche Differentialgleichung

y = x y′ −
√

1 + (y′)2 !(22.1)

Aufgabe 222: Clairautsche Differentialgleichung

Geben Sie alle Lösungen der Clairautschen Differentialgleichung

y = x y′ +
(

y′
)2

an.

22.3.4 Lagrangesche DGL

Aufgabe 223: Lagrangesche Differentialgleichung

Bestimmen Sie alle Lösungen der Differentialgleichung

(22.2) y = 2x y′ −
√

1 + (y′)2

Aufgabe 224: Ein Beispiel zur Lagrangeschen Differentialgleichung

Man löse die Lagrangesche Differentialgleichung

y = 2x y′ − ln y′ !(22.3)



22.4 Lineare Differentialgleichung

Aufgabe 225: Ein Anfangswertproblem

Lösen Sie das folgende Anfangswertproblem für eine lineare Differentialgleichung:

y′ =
y

1 + x2
+ 2x− 1; y(0) = 1.

Aufgabe 226: Die Differentialgleichung des Stromkreises

Die lineare Differentialgleichung für die Stromstärke I = I(t) in einem Stromkreis bestehend
aus einem Ohmschen Widerstand R und einer Induktivität L lautet:

dI

dt
(t) +

R

L
I(t) =

U(t)

L
.

Dabei ist U = U(t) die angelegte Spannung.

1. Lösen Sie das Anfangswertproblem mit der Wechselspannung U(t) = A sin(ωt) und
I(0) = 0.

2. Zeigen Sie, dass die Stromstärke für t → +∞ wieder eine Sinusschwingung gleicher
Frequenz, aber mit einer Phasenverschiebung ist und berechnen Sie diese Phasenver-
schiebung!

Leben eines Aufgabe 227: Käfers auf dem Gummiband

Lösen Sie die folgende Aufgabe aus dem Leben eines Käfers auf dem Gummiband. Gegeben
sei ein beliebig dehnbares Gummiband auf der x-Achse. Ein Ende des Gummibandes werde
bei x = 0 festgehalten. Das freie Ende entfernt sich mit der konstanten Geschwindigkeit v1
vom festen Ende. Zur Zeit t = 0 habe das Band die Länge L > 0 und zu dieser Zeit beginnt
ein Käfer bei x = 0 mit der konstanten Geschwindigkeit v2 relativ zum Band auf diesem
entlang zu kriechen. Errreicht er immer das andere Ende und wenn ja, nach welcher Zeit?



Aufgabe 228: Leitkurve

Die Gleichung
y′ + f(x)y = g(x)

ist eine lineare Differentialgleichung 1. Ordnung. Dabei seien die Funktionen f, g stetig für
x ∈ (a, b) und f(x) 6= 0.
Zeigen Sie: Die Geraden mit den Richtungen, welche das Richtungsfeld dieser Differential-
gleichung den Punkten einer Geraden x = x0, x0 ∈ (a, b) zuordnet, verlaufen durch einen
Punkt P (x0) ∈ R2! Die Punkte P (x0), x0 ∈ (a, b) liegen auf der sogenannten Leitkurve.
Bestimmen Sie die Gleichung der Leitkurve für das folgende Beispiel

y′ =
x

x2 − 1
y − 5

x2 − 1
für 1 < x < 4.

Fertigen Sie eine Zeichnung für das Richtungsfeld und die Leitkurve an, die die obige Be-
hauptung illustriert.

Aufgabe 229: lieare Differentialgleichung als exakte Differentialgleichung lösen

Bestimmen Sie einen Eulerschen Multiplikator für eine lineare Differentialgleichung

y′ + f(x)y = g(x)

und lösen Sie die zugehörige exakte Differentialgleichung.

Aufgabe 230: Verhalten im Unendlichen

In der linearen Differentialgleichung

y′ + f(x)y = g(x)

seien die Funktionen f, g für x ≥ 0 definiert und stetig mit

f(x) ≥ α > 0, |g(x)| ≤M

mit festen Zahlen α,M . Zeigen Sie:

1. Für jede Lösung der homogenen Differentialgleichung gilt limx→∞ y(x) = 0.

2. Jede Lösung der inhomogenen Differentialgleichung ist für x ≥ 0 beschränkt.



22.5 Theorie

Aufgabe 231: Autonome Differentialgleichung

Eine Differentialgleichung,
y′ = f(y)

bei der die rechte Seite nicht explizit von der unabhängigen Variablen x abhängt, heißt
autonom.

Zeigen Sie:

1. Zu jeder Lösung y(x) einer autonomen Differentialgleichungund jedem a ∈ R ist
die in Richtung der x-Achse verschobene Funktion ya(x) := y(x + a) Lösung dieser
Differentialgleichung.

2. Existiert
∫

dy

f(y)
,

so kann man die Umkehrfunktion der Lösung bestimmen. Geben Sie diese an!

Aufgabe 232: Eindeutigkeitssatz von Nagumo

Es sei f : U → R in einer offenen Umgebung U von (x0, y0) ∈ R2 stetig und es gelte:

|f(x, y)− f(x, ȳ)| · |x− x0| ≤ |y − ȳ| für alle (x, y), (x, ȳ) ∈ U.

Zeigen Sie (Eindeutigkeitssatz von Nagumo): Es existiert höchstens eine Lösung des An-
fangswertproblems

y′ = f(x, y), y(x0) = y0

in einer Umgebung von x0.

Aufgabe 233: Lipschitzbedingung auf Vertikalstreifen

Ist die Funktion f : R × R → R stetig und erfüllt sie auf jedem Vertikalstreifen [−a, a] ×
R, a > 0 eine Lipschitzbedingung bezüglich y, wobei die Lipschitzkonstante von a abhängen
kann, so besitzt das Anfangswertproblem

y′ = f(x, y), y(x0) = y0 (x0, y0 ∈ R)

genau eine auf ganz R definierte Lösung.



Aufgabe 234: Monotonieprinzip

Es seien die Funktionen w = w(x), z = z(x) für x ∈ [a, b] stetig differenzierbar und w(a) =
z(a). Ferner sei f = f(x, y) für x ∈ [a, b], y ∈ R definiert. w genüge der Differentialgleichung

w′(x) = f (x,w(x)) , x ∈ [a, b],

während z der Differentialungleichung

z′(x) > f (x, z(x)) , x ∈ [a, b],

genüge. Zeigen Sie:
z(x) > w(x) für x ∈ (a, b].

Aufgabe 235: Polygonzugmethode

Es werde das Anfangswertproblem y′ = f(x, y), y(0) = 0 mit der durch

f(x, y) = y|y|−3/4 + x sin
π

x

gegebenen stetigen Funktion f : R2 → R betrachtet (für y = 0 werde y|y|−3/4 = 0 und
für x = 0 werde x sin π

x = 0 gesetzt). Sei δ = (n + 1
2)

−1, n ∈ N und yn der zugehörige
Eulersche Polygonzug mit den Stützstellen xk = kδ. Beweisen Sie, daß die Folge {yn}n≥1

dieser Polygonzüge in keinem Intervall der Form [0, a], a > 0 gleichmäßig konvergiert.
Hinweis: Zeigen Sie durch Fallunterscheidung n gerade/ungerade und untere bzw. obere
Abschätzung, daß die Folge {yn(x)}n≥1 für kein x ∈ (0, a0), a0 > 0 hinreichend klein,
konvergiert.

Aufgabe 236: Sukzessive Approximation

1. Bestimmen Sie nach der Methode der sukzessiven Approximation die ersten vier Nä-
herungen für die Lösung des Anfangswertproblems:

y′ = y2 + 3y − 4, y(0) = −3

2
.

2. Sind alle sukzessiven Approximationen Polynome und wenn ja, von welchem Grad?

3. Bestimmen Sie ein möglichst großes Intervall um 0, in dem der Satz von Picard-
Lindelöf die gleichmäßige Konvergenz der sukzessiven Approximationen garantiert.

4. In welchem Intervall existiert die exakte Lösung? Lässt sich die exakte Lösung in eine
Potenzreihe um 0 entwickeln? Wenn ja, dann vergleichen Sie die Näherungen mit der
Potenzreihenentwicklung der exakten Lösung.



Kapitel 23

n-ter Ordnung

23.1 Analytische Lösungen

Aufgabe 237: Potenzreihenansatz

Suchen Sie für die Differentialgleichung y′′ + xy = 0 ein Fundamentalsystem von Lösungen
in Gestalt von Potenzreihen und berechnen Sie dessen Wronskideterminate. Was lässt sich
über die Konvergenz der Reihen aussagen?

23.2 konstante Koeffizienten

Aufgabe 238: konjugiert komplexe Eigenwerte

Bestimmen Sie die allgemeine Lösung der Differentialgleichung

y(4) − 6y(3) + 17y′′ − 28y′ + 20y = 0.

Aufgabe 239: allgemeine Lösung und Anfangswertproblem

Bestimmen Sie die allgemeine Lösung der Differentialgleichung

y′′ + 2y′ + y = 1− x.

Lösen Sie das zugehörige Anfangswertproblem mit y(0) = 4, y′(0) = 1.

23.3 nichtkonstante Koeffizienten

Aufgabe 240: Eulersche Differentialgleichung

Lösen Sie die folgenden Eulerschen Differentialgleichungen:
a) x3y′′′ + xy′ − y = 3x4;
b) x2y′′ − 7xy′ + 15y = x mit Anfangswerten y(1) = y′(1) = 0.
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Aufgabe 241: Eulersche Differentialgleichung

Zeigen Sie, dass sich eine sogenannte Eulersche Differentialgleichung

anx
ny(n) + an−1x

n−1y(n−1) + . . .+ a1xy
′ + a0y = 0

mit konstanten Koeffizienten a0, . . . , an im Intervall (0,∞) durch die Substitution x = et

in eine lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten für die
Funktion z = z(t) := y(x(t) überführen läßt.

Aufgabe 242: Fundamentalsystem bei nichtkonstanten Koeffizienten

Finden Sie ein Fundamentalsystem von Lösungen für die Differentialgleichung

(2x− 3x3)y′′ + 4y′ + 6xy = 0.

Hinweis: Suchen Sie zunächst Lösungen in der Gestalt y = xa!

Aufgabe 243: Fourierentwicklung

Bestimmen Sie die 2π-periodische Lösung der Differentialgleichung y′′ + 4y = g(x) mit

g(x) =







x

π
für 0 ≤ x ≤ π,

2− x

π
für π ≤ x ≤ 2π.

Geben Sie Fourierreihenentwicklung der Lüsung an und zeigen Sie deren gleichmäßige und
absolute Konvergenz.

Aufgabe 244: Reduktion

Finden Sie ein Fundamentalsystem von Lösungen für die Differentialgleichung

(2x− 3x3)y′′ + 4y′ + 6xy = 0.

Hinweis: Suchen Sie zunächst Lösungen in der Gestalt y = xα!

Aufgabe 245: Reduktion

Finden Sie ein Fundamentalsystem von Lösungen für die Differentialgleichung

xy′′ + 2y′ − xy = 0.

Hinweis: Suchen Sie zunächst Lösungen in der Gestalt y(x) = xαex!



Aufgabe 246: Partielle Integration

Lösen Sie das Anfangswertproblem:

xy′′ + (y − 1)y′ = 0, y(1) = 0, y′(1) = −2.

Hinweis: Integrieren Sie die linke Seite über das Intervall [1, x] und formen Sie durchpartielle
Integration um; man erhält eine Differentialgleichung 1. Ordnung.

Aufgabe 247: Multiplikationstrick

Lösen Sie das Anfangswertproblem

y′′ = ey, y(0) = 0, y′(0) =
√
2.

Hinweis: y′y′′ = 1
2

(

y′2
)′
, eyy′ = (ey)′!

23.4 Theorie

Aufgabe 248: Differentialgleichungzu gegebenem Fundamentalsystem bestimmen

a) Unter welchen Voraussetzungen kann man zu gegebenen Funktionen yi = yi(x),
i = 1, . . . , n eine lineare homogene Differentialgleichung n-ter Ordnung bestimmen, für
die y1, . . . , yn ein Fundamentalsystem bilden?
b) Diskutieren Sie die Frage von a) für das Beispiel

y1(x) =
1

x
, y2(x) = x, y3(x) = x2, x > 0

und geben Sie gegebenenfalls eine Differentialgleichung an.

Aufgabe 249: Fortsetzbarkeit

Es werde die Differentialgleichungy′′ = g(y) betrachtet. Dabei genüge g : R → R einer
Lipschitzbedingung und es gelte sg(s) < 0 für s 6= 0.

Zeigen Sie:

1. Jede Lösung der Differentialgleichungist auf ganz R fortsetzbar.

2. Gilt
∫ s
0 g(t) dt→ −∞ für s→ ±∞, so ist jede Lösung periodisch.

Aufgabe 250: Höchstens eine Nullstelle

Sei y(x) eine nichttriviale Lösung der Differentialgleichung y′′ + q(x) y = 0 im Intervall
[a, b] ⊂ R. Die Funktion q sei stetig und negativ auf [a, b]. Zeigen Sie, dass y im Intervall
[a, b] höchstens eine Nullstelle hat.



Aufgabe 251: Polynomringeigenschaft von Differentialoperatoren

Jedem Polynom
P (λ) = anλ

n + an−1λ
n−1 + . . . a0

wird ein Differentialoperator P (D), D = d/dx mit konstanten Koeffizienten zugeordnet,
der auf Funktionen u = u(x) nach der Vorschrift

P (D)u = anD
nu+ an−1D

n−1u+ . . . a0u

wirkt. Zeigen Sie die Rechenregel aus der Vorlesung:

P1(D)[P2(D)u] = P2(D)[P1(D)u] = (P1P2)(D)u.

Aufgabe 252: Spezielle Lösung

Gegeben sei die inhomogene lineare Differentialgleichung n-ter Ordnung

y(n) + an−1y
(n−1) + ...+ a0y = f(x) eαx

mit konstanten Koeffizienten ak ∈ R, α ∈ R und stetiger Funktion f : (a, b) → R. Das
zugehörige charakteristische Polynom sei P (λ) = (λ−α)n, d. h. α ist n-fache Nullstelle von
P .
Zeigen Sie: ys(x) := u(x) eαx ist genau dann eine spezielle Lösung der inhomogen Gleichung,
wenn u(n)(x) = f(x) ist.

Aufgabe 253: Taylorscher Lehrsatz

Es seien eine stetige Funktion g = g(x) im Intervall (a, b), x0 ∈ (a, b) und y0, . . . , yn−1 ∈ R

gegeben. Bestimmen Sie die Lösung des Anfangswertproblems

y(n) = g(x), y(x0) = y0, y
′(x0) = y1, . . . , y(n− 1)(x0) = yn−1.

Aufgabe 254: Unendlich viele Nullstellen

Zeigen Sie: Hat eine Lösung y = y(x), x ∈ [a, b] einer linearen homogenen Differentialglei-
chung n-ter Ordnung mit stetigen Koeffizienten im Intervall [a, b] unendlich viele Nullstellen,
so ist y(x) = 0 für alle x ∈ [a, b].



Kapitel 24

Systeme

24.1 konstante Koeffizienten

Aufgabe 255: allgemeine Lösung

Bestimmen Sie die allgemeine Lösung des folgenden inhomogenen linearen Differentialglei-
chungssystems für drei gesuchte Funktionen y1 = y1(x), y2 = y2(x), y3 = y3(x):

y′1 = y1 − 2y2 + cosx,

y′2 = 2y1 − y3 + sinx,

y′3 = 4y1 − 2y2 − y3.

Aufgabe 256: allgemeine Lösung bestimmen

Bestimmen Sie die allgemeine Lösung des folgenden Differentialgleichungssystemserster
Ordnung für drei gesuchte Funktionen y1 = y1(x), y2 = y2(x), y3 = y3(x)





y′1
y′2
y′3



 =





0 0 1
1 0 1
8 −3 −1









y1
y2
y3



+





0
−2x
2x



 .

Aufgabe 257: einfache und doppelte konjugiert komplexe Nullstellen

Man gebe reelle Fundmentalsysteme für die folgenden beiden Differentialgleichungssysteme
an.

a)

(

ẋ1
ẋ2

)

=

(

1 −3
3 1

)

·
(

x1
x2

)

b)









ẋ1
ẋ2
ẋ3
ẋ4









=









1 −3 0 0
3 1 0 0
0 0 1 −3
0 0 3 1









·









x1
x2
x3
x4








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Aufgabe 258: Fundmentalsystem

Bestimmen Sie ein Fundamentalsystem von Lösungen für das homogene Differentialglei-
chungssystem y′ = Ay mit der (3× 3)-Matrix

A =





−1
2

1
2 2

−1
2

1
2 1

−1 −1 3



 .

Aufgabe 259: gemeinsame Lösungen

a) Zeigen Sie: Zwei lineare homogene Differentialgleichungen haben genau dann eine nicht-
triviale gemeinsame Lösung, wenn der Grad des größten gemeinsamen Teilers ihrer charak-
teristischen Polynome ≥ 1 ist.
b) Bestimmen Sie die gemeinsamen Lösungen der Differentialgleichungen

y(6) − y(4) + 2y(2) − 2y = 0,

y(5) − 3y(3) + 2y′ = 0.

Aufgabe 260: geomerische VFH < algebraische VFH

Bestimmen Sie die linear unabhängigen Lösungen des folgenden Differentialgleichungssys-
tems!





ẋ(t)
ẏ(t)
ż(t)



 =





3 1 2
−1 5 2
0 0 4



 ·





x(t)
y(t)
z(t)





Aufgabe 261: Kompartement-Modell 1

Ein Tank K1 enthalte 100 Liter Wasser, in dem 5 kg Salz aufgelöst sind, ein Tank K2

enthalte 300 Liter Wasser, in dem 5 kg Salz aufgelöst sind. Beginnend mit der Zeit t0 = 0
werden pro Minute ständig 10 Liter Salzlösung von K1 nach K2 und 10 Liter von K2 nach
K1 gepumpt und sofort verrührt. Wie groß ist der Salzgehalt mi(t) in Ki, i = 1, 2 zur Zeit
t > 0 ? Auf welchem Niveau stabilisiert sich schließlich der Salzgehalt in Ki ?

Aufgabe 262: nilpotente Koeffizientenmatrix

Es sei A eine nilpotente reelle (n× n)-Matrix, d.h. es gilt Al = 0 für ein l ∈ N.

Zeigen Sie:
Jede Funktion yi einer Lösung y = (y1, . . . , yn) des Differentialgleichungssystem y′ = Ay
ist ein Polynom vom Grad ≤ l − 1.



Aufgabe 263: Rang-1-Koeffizientenmatrix

Bestimmen Sie ein Fundamentalsystem für das Differentialgleichungssystem

y′i =
n
∑

j=1

ajyj , i = 1, . . . , n, aj = const.

Berechnen Sie die Determinante der zugehörigen Fundamentalmatrix.

Aufgabe 264: Schiefsymmetrische Koeffizientenmatrix

Zeigen Sie, daß eine reelle (n× n)-Matrix A genau dann schiefsymmetrisch ist (d.h. es gilt
A = −A⊤), wenn alle Lösungen y = y(x) des homogenen Differentialgleichungssystems
y′ = Ay einen konstanten (euklidischen) Betrag haben: y(x)⊤y(x) = const.

Aufgabe 265: Verhalten im Unendlichen

Berechnen Sie die allgemeine Lösung des Differentialgleichungssystems

y′1 = y2 + y3,

y′2 = y1 + y3,

y′3 = y1 + y2.

Wie verhalten sich die Lösungen für x→ ±∞?

24.2 Matrixexponentialfunktion

Aufgabe 266: Anwendung der Rechenregeln

Berechnen Sie

exp





a 1 1
0 a 1
0 0 a



 , a ∈ R.

Aufgabe 267: Beispiele für die Matrixexponentialfunktion

Berechnen Sie die folgenden Werte der Matrizen-Exponentialfunktion:

exp

(

3 2
−1 1

)

, exp

(

x −y
y x

)

(x, y ∈ R).



Aufgabe 268: Matrix-Exponentialfunktion

Berechne die folgenden Matrizen:

1.

exA für x ∈ R und A =

(

a b
0 a

)

mit beliebigen Parametern a, b ∈ R.

2. eA, eB, eAeB, eBeA und eA+B für

A =

(

1 0
0 0

)

und B =

(

0 1
0 0

)

.

Aufgabe 269: Nilpotenz

Zeigen Sie: Ist A eine nilpotente, komplexe (n× n)-Matrix mit Al+1 = 0, l ∈ N, so gilt:

E −A = exp

(

−A− A2

2
− A3

3
− . . .− Al

l

)

.

Aufgabe 270: Positive Matrizen

Beweisen Sie: Genau dann sind die Elemente von exA (A = (aij) reelle (n× n)-Matrix) für
alle x ≥ 0 nichtnegativ, wenn für die Elemente aij von A gilt: aij ≥ 0 für i 6= j .
Hinweis: Für hinreichend großes α ∈ R sind die Elemente von A+ αE alle ≥ 0.

Aufgabe 271: Rechenregeln für die Matrixexponentialfunktion

Es seien A, B komplexe (n×n)-Matrizen mit AB = BA (d.h. die Matrizen sind vertausch-
bar). Zeige Sie die folgenden Rechenregeln für die Matrizen-Exponentialfunktion:
a) eA eB = eB eA,
b) eA+B = eA eB.
Zusatzaufgabe: Geben Sie Gegenbeispiele zu a), b) an, falls die Bedingung der Vertausch-
barkeit verletzt ist.

Aufgabe 272: Umkehrfunktion zur Matrix-Exponentialfunktion

Bestimmen Sie eine komplexe (2× 2)-Matrix C mit

(

1 4
1 1

)

= eC .



24.3 nichtkonstante Koeffizienten

Aufgabe 273: Zurückführung auf Gleichung 2. Ordnung

Es sei das lineare Differentialgleichungssystem

Y ′ = A(x)Y + b(x) mit A(x) =

(

0 1
− 2

x2
2
x

)

, b(x) =

(

x4

x3

)

(x > 0)

für zwei gesuchte Funktionen Y = (y1, y2)
⊤ gegeben. Bestimmen Sie die Lösung mit den

Anfangswerten Y (2) = (1, 4)⊤.

Aufgabe 274: konstante Differenz

Es sei das Differentialgleichungssystem

y′1 =
y1
x

− 2
y2
x

+ 1, y′2 =
y1
x

− 2
y2
x

+ x (x > 0)

gegeben. Bestimmen Sie ein Fundamentalsystem von Lösungen für das homogene System.
Lösen Sie das Anfangswertproblem für das inhomogene System mit den Anfangswerten
y1(1) = 1, y2(1) = 1.

Aufgabe 275: Lineares DGL-System und Matrix-Exponentialfunktion

Die Funktionen f = f(x), g = g(x) seien in einem Intervall [a, b] stetig. Bestimmen Sie ein
Fundamentalsystem für das folgende Differentialgleichungssystem:

y′1 = f(x)y1 − g(x)y2,

y′2 = g(x)y1 + f(x)y2.

Hinweis: Benutze die bereits an anderer Stelle bewiesene Beziehung

A =

(

u −v
v u

)

=⇒ eA =

(

eu cos v −eu sin v
eu sin v eu cos v

)

Aufgabe 276: Spezielle Lösung

Bestimmen Sie eine spezielle Lösung des inhomogenen Differentialgleichungssystems

y′1 = 2xy2 + cosx2, y′2 = −2xy1 − sinx2.





Kapitel 25

Trajektorien

Aufgabe 277: Trajektorien - Theorie und Beispiele

Orthogonale Trajektorien einer gegebenen ebenen Kurvenschar sind Kurven, die die ge-
gebene Schar in jedem Punkt senkrecht schneiden. So sind z. B. die Äquipotentiallinien
orthogonale Trajektorien zu den Feldlinien eines Kraftfeldes. Allgemeiner sind isogonale
Trajektorien Kurven, die die gegebene Schar unter einem festen Winkel α ∈ [0;π/2] schnei-
den; i. allg. gibt es jeweils zwei Scharen isogonaler Trajektorien zum Schnittwinkel α.

1. Bestimmen Sie eine Differentialgleichung für die orthgogonalen Trajektorien zu einer
Kurvenschar, die in der impliziten Form F (x, y, c) = 0, c ∈ R gegeben ist.

2. Bestimmen Sie die isogonalen Trajektorien mit dem Schnittwinkel α zur Geradenschar
y = cx, c ∈ R.

3. Bestimmen Sie die orthogonalen Trajectorien zur Ellipsenschar x2 +2y2 = c2, c ∈ R.
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Kapitel 26

Binomialkoeffizienten

Aufgabe 278: Primzahltest

Sei n ∈ N, n ≥ 2. Zeigen Sie:

n ist Primzahl genau dann, wenn n Teiler von

(

n
i

)

ist für alle i = 1, . . . , n− 1.
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Kapitel 27

Lineare Gleichungssysteme

Aufgabe 279: vollsymetrisches System

Seien a, b, c ∈ Q mit a+ b+ c 6= 0. Zeigen Sie, dass das homogene lineare Gleichungssystem

a x1 + b x2 + c x3 = 0
a x2 + b x3 + c x4 = 0

a x3 + b x4 + c x5 = 0
c x1 + a x4 + b x5 = 0
b x1 + c x2 + a x5 = 0

(x1, x2, x3, x4, x5 Unbestimmte) nur die triviale Nulllösung besitzt.
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Kapitel 28

Matrizen

28.1 Eigenvwerte und -vektoren

Aufgabe 280: Diagonalisierbarkeit

Zeigen Sie, dass der durch Te1 = 0, Tek = ek−1, (k = 2, . . . , n), gegebene Operator
T ∈ L(Rn) nicht diagonalisierbar ist.

Aufgabe 281: Transformation auf Diagonalgestalt

1. Finden Sie alle Eigenwerte und Eigenvektoren der Matrix

A =





3 2 0
2 4 2
0 2 5



 .

2. Bestimmen Sie die Transformationsmatrix, die A in Diagonalgestalt überführt.

Aufgabe 282: Eindeutigkeit der Inversen

Sei K ein Ring mit Einselement und sei A ∈ Km,n, wobei m,n ∈ N+. Zeigen Sie:

a) Wenn es Matrizen B,C ∈ Kn,m gibt mit BA = En und AC = Em, so folgt B = C.

b) Sei K ein Körper und sei A Koeffizientenmatrix eines linearen Gleichungssystems mit
Konstantentupel b ∈ Km. Ist seine Lösungsmenge L nicht leer und gilt m ≤ n, so
sind zur Parameterdarstellung von L mindestens n−m Parameter erforderlich.

c) Sei K ein Körper. Wenn m 6= n, so gibt es keine B,C ∈ Kn,m mit BA = En und
AC = Em.
Bemerkung: Dies gilt auch, wenn K ein beliebiger kommutativer Ring mit Einselement ist.
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Kapitel 29

Vektorräume und Moduln

29.1 K(m,n)

Biuntermoduln von KAufgabe283:m,n

Sei K ein Körper und seien m,n ∈ N+. Zeigen Sie, dass Km,n nur die trivialen
(Km,m,Kn,n)-Biuntermoduln besitzt. Insbesondere besitzt Rn,n nur die trivialen zweiseiti-
gen Ideale.

29.2 Vektorräume

Aufgabe 284: Basen

1. Zeigen Sie, dass die Menge M =
{

1 + x+ x2, 1 + x
}

keine Basis für P2 ist. Sodann
ergänzen Sie M durch Hinzunahme einer der Potenzen 1, x oder x2 zu einer Basis für
P2.

2. Sei M =
{

1, x3 − x, x3 + 1, x− 1
}

und U = span (M) die lineare Hülle von M im
Vektorraum P3. Wählen Sie eine Basis für U aus M aus.

Aufgabe 285: Dimension

1. Man bestimme die Dimension des durch die Vektoren v1 = (0, 1, 2), v2 = (1, 1, 1),
v3 = (1, 0, 1) aufgespannten Unterraumes U des R3.

2. U1, U2 seien Unterräume eines Vektorraumes V endlicher Dimension, und es sei
dimU1 + dimU2 > dimV . Zeigen Sie, dass dann U1 ∩ U2 6= {0} gilt.
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Aufgabe 286: Vektorraum-Eigenschaften

Sei V ein Vektorraum über K, ( K ist R oder C).

1. Man beweise mit Hilfe der Vektorraumaxiome, dass für alle u ∈ V und α ∈ K,

0 · u = O, (−1) · u = −u, α ·O = O.

2. Zeigen Sie, dass der Durchschnitt beliebig vieler Unterräume von V wieder ein Un-
terraum von V ist.

3. Seien v1, v2, . . . , vn ∈ V , a, b ∈ K, a 6= 0 .Zeigen Sie, dass

span {v1, v2, . . . vn} = span {av1, v2, . . . , vn} = span {v1 + bv2, v2, . . . , vn} .

29.2.1 Lineare Abbildungen

Aufgabe 287: Abbildungsmatrix

Es sei B =
{

1, x, x2
}

die kanonische Basis für den Vektorraum P2. Zeigen Sie, dass der
Ableitungsoperator D ≡ d

dx auf P2 bzgl. B die Matrixdarstellung

MB(D) =





0 1 0
0 0 2
0 0 0





hat.

Aufgabe 288: Basistransformation

Es seien durch A = {e1, e2} und B = {2e1 + e2, 2e2 − e1} zwei Basen auf R2 und eine
lineare Abbildung L ∈ L(R2) durch die Matrix

MA(L) =

(

1 2
3 4

)

gegeben. Man berechne nacheinander S =MA
B (1), S−1 und MB(L)..

Aufgabe 289: Kern und Abildungsmatrix

Sei T ∈ L(P4,P2) gegeben durch

Tp(x) := p′′(x), (p ∈ P4).

1. Man bestimme den Kern von T .

2. Seien A =
{

1, x, x2, x3, x4
}

und B =
{

1, x, x2
}

die natüurlichen Basen von P4 bzw.
P2. Bestimmen Sie die Matrix von T bzgl. der Basen A und B.



Aufgabe 290: Surjektivität und Injektivität

Es seien V,W Vektorräume der Dimension n, (n ∈ N), und L : V → W eine lineare
Abbildung. Zeigen Sie:

L ist bijektiv ⇔ L ist injektiv ⇔ L ist surjektiv.

Hinweis: Verwenden Sie die Dimensionsformel und beachten Sie, dass L injektiv ist genau
dann wenn Kern L = {0} ist.

Aufgabe 291: Lineare Abhängigkeit

Es ist zu untersuchen, welche der folgenden Teilmengen des Vektorraumes V linear unab-
hängig, welche linear abhängig sind.

1.
{

1, ex, e2x
}

, V = C(R).

2.
{

1, cosx, cos2 x, cos(2x)
}

, V = C(R).

3. {1, x, |x|} , V = C(R).

4. {1, x, |x|} , V = C([0,∞)).

Aufgabe 292: Linearkombinationen

Die nachstehend genannten Behauptungen beweise man bzw. widerlege man durch Angabe
eines Gegenbeispiels.

1. Ist {v1, v2, v3, v4} ein linear abhängiges Vektorsystem, so ist v4 eine Linearkombination
von {v1, v2, v3}.

2. Ist v4 eine Linearkombination von {v1, v2, v3}, so ist {v1, v2, v3, v4} ein linear abhän-
giges Vektorsystem.

29.2.2 Unterräume

Aufgabe 293: Unterraumkriterien

1. Seien α1, . . . , αn ∈ R und U := {x ∈ Rn | α1x1 + . . .+ αnxn = 0}. Zeigen Sie, dass U
ein Unterraum des Rn ist.

2. Wann ist für zwei Unterräume U1, U2 eines Vektorraumes V über einem Körper K

auch U1 ∪ U2 ein Unterraum von V ?



Aufgabe 294: Unterraumkriterien

1. Man prüfe, ob die MengeM derjenigen Vektoren des Rn, deren erste zwei Koordinaten
x1, x2 die Gleichung 5x1 − x2 = 2 erfüllen, ein Unterraum des Rn ist.

Man untersuche, ob folgende Mengen von Polynomen Unterräume von P bilden:

2. die Menge M1 aller Polynome, die für x = 3 verschwinden;

3. die Menge M2 aller Polynome p(x) mit p(1) = 2.
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Kapitel 30

Flächen und Durchfluss

Aufgabe 295: Ellipsoid

Man berechne Volumen und Oberfläche des Ellipsoids

E = {(x, y, z) ∈ R3,
x2

a2
+
y2

b2
+
z2

c2
= 1.

Aufgabe 296: Fluss des Coulomb-Feldes
Berechnen Sie den Fluß eines Coulumb-Feldes

K(x) =
1

4πr2
x

r
; r = ‖x‖ 6= 0

durch die nach außen orientierte Oberfläche ∂G eines zulässigen Bereiches G ⊂ R3, welcher
den Ursprung in seinem Inneren enthält.

Aufgabe 297: Fluss durch Zylinderwand

Berechnen Sie den Fluss des Vektorfeldes ~w = (x, y, z) durch den Rand des Zylinders vom
Radius 1 und der Höhe 1, der symmetrisch zur z-Achse auf der (x, y)-Ebene steht.

Aufgabe 298: Kegelspitze

Berechnen Sie den Inhalt des Flächenstückes
S ⊂ R3 mit

S = {(x, y, z)|x = z cos3 ϕ, y = z sin3 ϕ
mit 0 ≤ z ≤ 2, 0 ≤ ϕ ≤ 2π}.

0

0.5

1

1.5

2

–1

1

–1.5
–1

–0.5
0.5

1
1.5

2

Aufgabe 299: Schwerpunkt der oberen Halbsphäre vom Radius R

Man berechne den Schwerpunkt der oberen Halbsphäre F vom Radius R
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Aufgabe 300: Einander durchdringende Zylinder

1. Man bestimme denjenigen Teil der
Fläche des Zylinders x2 + z2 = a2, der
innerhalb des Zylinders x2 + y2 = a2

liegt!

2. Man bestimme die Durchflußmenge
durch die obere Fläche zum Fluß
~f = (0, 0, 1)!

3. Man bestimme die Durchflußmenge
durch die Gesamtflächen zum Fluß ~g =
(0, 0, z) (Quellen auf der (x, y)-Ebene)!

4. Man bestimme das Volumen des Ge-
bietes G, das innerhalb beider Zylinder
liegt.



Kapitel 31

Flächenintegrale im R2

Aufgabe 301: Streifen im 1. Quadranten

Berchnen Sie das Integral

I =

∫∫

Ω
x y dxdy,

wenn Ω = {(x, y) ∈ R2 | x > 0, y > 0, 1 < x+ y < 2}.
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Kapitel 32

Gaußscher Satz im Raum

Aufgabe 302: Kugel - Zylinder
Aus einer Kugel vom Radius 2R wird ein Zylinder vom
Radius R so herausgeschnitten, dass die Längsachse des
Zylinders durch den Kugelmittelpunkt geht. Man bestim-
me das Volumen des Restkörpers K mit den folgenden
Methoden:

1. klassische Geometrie

2. Volumenintegral

3. Satz von Gauß mit einem geeigneten Vektorfeld

4. Guldinsche Regel (Rotationskörper)

xR R

h

a

2R

z
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Kapitel 33

Gaußscher Satz in der Ebene

Aufgabe 303: Fläche der Kardioide

Berechnen Sie die von der Kardiode eingeschlossene
Fläche und deren Umfang.

Die Kardioide (vgl. Bronstein Kap. 1.3.1.2) ist die
Epizykloide (Rollkurve) eines Kreises vom Radius a,
der um einen Kreis gleichen Radiusses reibungsfrei
gerollt wird, d. h. die Kurve, die ein fester Punkt
auf der Peripherie des rollenden Kreises in der Ebene
beschreibt.

43

3

2

1

21

-2

0

y

0

-1
x

Aufgabe 304: Das kartesiche Blatt

Berechnen Sie den Flächeninhalt des im ersten
Quadranten liegenden Teils des kartesischen Blat-
tes.
Hinweis: Das kartesische Blatt ist die Fläche, die
von der Kurve

x3 + y3 = 3axy

und der Geraden

x+ y = −a

eingeschlossen wird.
Um eine Parametrisierung zu erhalten, versuchen
Sie den Ansatz y = t x.

4

4

2

2
0

-2

0

-4

-2-4
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Aufgabe 305: Flächenberechnung über Kurvenintegrale - die Sektorformel

1. Leiten Sie aus dem Gaußschen Satz in der
Ebene durch Angabe eines speziellen Vek-
torfeldes eine Formel her, um den Flächen-
inhalt über ein Kurvenintegral zu berech-
nen.

2. Berechnen Sie den Flächeninhalt eines sek-
torförmigen Gebietes, d. h. eines Gebietes,
das durch zwei Strahlen aus dem Koordina-
tenursprung und einer Kurve r(ϕ) begrenzt
wird, die den Abstand des Punktes vom Ur-
sprung innerhalb der beide Strahlen angibt.

phi2

r(phi)

phi1



Kapitel 34

Maße

34.1 messbare Mengen

Aufgabe 306: Messbare Mengen bilden Algebra

Sei µ ein (äußeres) Maß auf der Potenzmenge A = 2X einer Grundmenge X. Eine Menge
A ∈ A heißt messbar gdw.

µ(B) = µ(B ∩A) + µ(B\A) für alle B ∈ A.

Zeigen Sie:

1. ∅ ist messbar.

2. Nullmengen sind messbar.

3. X ist messbar.

4. Ist A ∈ A messbar, dann ist auch X\A messbar.

5. Sind A1, A2 ∈ A messbar, dann ist auch D := A1 ∩A2 messbar.

6. Sind A1, A2 ∈ A messbar, dann ist auch V := A1 ∪A2 messbar.

Bemerkung: Aus den Punkten a), d) und e) folgt bereits, dass die messbaren Mengen eine
Algebra bilden.

Zusatzaufgabe: Zeige, dass die messbaren Mengen sogar eine σ-Algebra bilden, d. h.:

Sind A1, A2, · · · ∈ A messbar, dann sind auch

D =
∞
⋂

i=1

An und V =
∞
⋃

i=1

An

messbar.
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34.2 Nullmengen

Aufgabe 307: Fast alle in endlich vielen Mengen

Es sei µ ein Maß auf einer σ-Algebra A über X und {An}n≥1, An ∈ A eine Folge meßbarer
Mengen mit

∑∞
n=1 µ(An) < +∞.

Zeigen Sie:
Fast alle x ∈ X gehören zu höchstens endlich vielen der Mengen An.



Kapitel 35

Prinzip des Cavalieri - Guldinsche Regel

Aufgabe 308: Cavalierie-Prinzip

Es sei B ⊂ Rn Jordan-messbar und für x = (x1, . . . , xn) ∈ B sei a ≤ xn ≤ b.

Q(xn) :=
{

x′ ∈ Rn−1 | (x′, xn) ∈ B
}

q(xn) := |Q(xn)|n−1

Man zeige:

|B| =
∫ b

a
q(xn) dxn.

Aufgabe 309: Inhalt eines Glases

Das Innere eines Glases soll die Form eines
Rotationsparaboloids z = x2 + y2 haben.
Berechne das Volumen V und die Oberfläche
O des Glasinneren
mittels

1. Guldinscher Regel,

2. Volumenberechnung durch Integration
im R3.

Welche Höhe h muss das Innere des Glases
haben, wenn es 0,5 Liter fassen soll.

–4
–2

0
2

4

–4
–2

0
2

4
0

2

4

6

8

10

12

14

16

153



Aufgabe 310: Die n-dimensionale Einheitskugel

Man bestimme Volumen und Oberfläche der n-
dimensionalen Kugel vom Radius r mit Hilfe des
Prinzips von Cavalieri!

Aufgabe 311: Volumen und Oberfläche des Torus

Man berechne Volumen V und Oberfläche O
des Torus

1. mit dem Cavalieri-Prinzip

2. direkt durch geeignete Koordinatendar-
stellung und Transformationsformel.

10
5

2
1
0
-1-2100

5
0-5

-5
-10-10



Kapitel 36

Volumenintegrale im R3

Aufgabe 312: Kugelkoordinaten

Man berechne das Volumen des Körpers, der be-
grenzt wird von der Fläche

(x2 + y2 + z2)2 = axyz.

-4

-2
y

0

2

4
-4

-2

0
x

2

4

t = 0.

Aufgabe 313: Kegelhalbierung

Ein gerader Kreiskegel mit Grundkreis-
radius r und Höhe h wird durch einen
ebenen Schnitt im Winkel α zur Grund-
fläche in zwei volumengleiche Teile geteilt.
(α sei dabei natürlich echt kleiner als
der Mantelwinkel des Kegels, so dass als
Schnittfläche eine Ellipse entsteht, de-
ren Rand ganz auf dem Kegelmantel liegt.)

Wie groß ist die Schnittfläche und in wel-
cher Höhe schneidet die Schnittebene die
Kegelachse?

2

1

-2
-1 00

0
1

2

2

-1

4

-2

6

8

10
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Aufgabe 314: Kugel mit Loch

In eine Kugel vom Radius r wird ein zylin-
drisches Loch vom Radius a so gebohrt, dass
die Zylinderachse durch den Kugekmittelpunkt
geht. Die Höhe des Loches beträgt 1 m.

Wie groß ist das Volumen des Restkörpers?

a

h

r
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Kapitel 37

Kombinatorik

Aufgabe 315: Grundaufgaben der Kombinatorik

Es seien M = {1, . . . ,m} und N = {1, . . . , n} mit natürlichen Zahlen m,n. Bestimmen Sie
die Anzahl aller

1. eindeutigen Abbildungen f :M 7→ N ;

2. eindeutigen Abbildungen f :M 7→ N mit f(1) ≤ f(2) ≤ · · · ≤ f(m);

3. eineindeutigen Abbildungen f :M 7→ N ;

4. eineindeutigen Abbildungen f :M 7→ N mit f(1) ≤ f(2) ≤ · · · ≤ f(m).
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Kapitel 38

Mächtigkeit

Aufgabe 316: Abzählbarkeit von Teilmengen von N

Beweisen Sie: Die Menger aller endlichen Teilmengen von N ist abzählbar. Gilt das auch
für die Menge aller Teilmengen von N?
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Kapitel 39

Mengenbeziehungen

Aufgabe 317: Symmetrische Differenz

Für Mengen X,Y setzen wir X ∗ Y := (X ∪ Y ) \ (X ∩ Y ) (symmetrische Differenz von X
und Y ). Zeigen Sie, dass für Mengen X,Y, Z gilt

1. X ∗ Y = Y ∗X (Kommutativität)

2. X ∗ ∅ = X

3. (X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z) Assoziativität)

und bestimmen Sie für eine Menge A alle Mengen B mit A ∗B = ∅.
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Kapitel 40

Supremum und Infimum

Aufgabe 318: Beschränktheit von Mengen

Untersuchen Sie, ob die unter a) - c) definierten Mengen M reeller Zahlen nach oben
oder unten beschränkt sind. Wenn ja, dann bestimmen Sie gegebenfalls supM und infM .
Existieren dann auch maxM oder minM?

1. M :=

{

x ∈ R | x = 1− (−1)n

n
, n ∈ N

}

,

2. M :=
{

x ∈ R | x2 + 2x+ 2 > 5 x < 0
}

,

3. M :=

{

x ∈ R | x = t+
1

t
, 0 < t ≤ 10, t ∈ R

}

.

Aufgabe 319: Supreum und Infimum von Mengenkombinationen

Es seien X,Y nichtleere, beschränkte Mengen reeller Zahlen und

X + Y := {x+ y | x ∈ X, y ∈ Y } , X · Y := {xy | x ∈ X, y ∈ Y } .

1. Beweisen Sie:

sup(X + Y ) = supX + supY, inf(X + Y ) = infX + inf Y.

Gilt auch stets

sup(X · Y ) = supX · supY, inf(X · Y ) = infX · inf Y ?

2. Zeigen Sie:

sup(X ∪ Y ) = max {supX, supY } , inf(X ∪ Y ) = min {infX, inf Y } .

Ist X ∩ Y 6= ∅, so ist

sup(X ∩ Y ) ≤ min {supX, supY } , max {infX, inf Y } ≤ inf(X ∩ Y ).

Kann hierbei das Kleiner-Zeichen auftreten?
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Kapitel 41

Fehleranalyse

Aufgabe 320: differentielle Algorithmusanalyse

1. Bestimmen Sie die absolute und relative Problemkonditionszahl für die Funktion

f(x) =
1

x
− 1

x+ 1
=

1

x(x+ 1)
; x > 1.

2. Beurteilen Sie mit Hilfe der differentiellen (relativen) Stabilitätsanalyse, welcher der
beiden möglichen Algorithmen der bessere ist.
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Kapitel 42

Fixpunktiteration

Aufgabe 321: Fixpunktiteration bei einer Funktion 3. Grades

1. Bestimmen Sie numerisch die Nullstellen des kubischen Polynoms P = P (x) mit

P (x) =
1

4
x3 − x+

1

5
.

Schreiben Sie dazu die Gleichung P (x) = 0 in Fixpunktform um und überprüfen
Sie, ob im Intervall [0, 1] die Voraussetzungen des Fixpunktsatzes von Banach erfüllt
sind. Starten Sie die sukzessive Iterationsfolge mit x0 = 1

2 und berechnen Sie sechs
Iterationen, d. h. x1, . . . , x6.

2. Welche Fehlerabschätzungen liefern die a priori und a posteriori Abschätzungen?

3. Berechnen Sie die weiteren Nullstellen durch Abspaltung eines Linearfaktors und Lö-
sung einer quadratischen Gleichung. Wie lässt sich der Fehler der weiteren Nullstellen
abschätzen?
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Kapitel 43

Gauss-Algorithmus

Aufgabe 322: Beispiel zur Pivotisierung

Lösen Sie das Gleichungssystem




10 −7 0
−3 2.099 6
5 −1 5









x1
x2
x3



 =





7
3.901
6





in fünfstelliger Dezimal-Gleitkomma-Arithmetik

• bei einem Rechner, der abschneidet

• bei einem Rechner, der rundet.

1. Verwenden Sie je einmal den Gauß-Algorithmus ohne Pivotisierung, mit Spaltenpivo-
tisierung und mit Totalpivotisierung!

2. Vergleichen Sie die Ergebnisse mit der exakten Lösung und erklären Sie die Ursache
für auftretende Fehler!

3. Beurteilen Sie die Akzeptanz der Näherungslösungen mit dem Satz von Pra-
ger/Oettli!

4. Führen Sie gegebenenfalls eine Nachiteration durch!
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Kapitel 44

Integration

44.1 Gauss-Quadratur

Aufgabe 323: Ein Beispiel zur Gaußquadratur mit 2 Stützstellen

Man bestimme in der Arithmetik M10,5 die beste Quadraturformel über dem Intervall I =
[π, 2π] und berechne damit

∫ 2π

π
sin(x) dx.

Aufgabe 324: Ein Beispiel zur Gauß-Quadratur mit 4 Stützstellen

Man bestimme in der Arithmetik M10,5 die beste Quadraturformel über dem Intervall I =
[0, π] und berechne damit

∫ π

0
sin(x) dx.
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Kapitel 45

erster Ordnung

45.1 Charakteristikenmethode

Aufgabe 325: Anfangswertproblem

Lösen sie das Anfangswertproblem

x∇u+
1

2
|∇u|2 = u(x) für x ∈ Rn,

u(x) =
1

2
(1− |x|2) für x ∈ S = Rn−1 × {0}

Aufgabe 326: Charakteristisches System

Leiten Sie eine explizite Darstellungsformel für die Lösung u = u(t, x) des folgenden An-
fangswertproblems her:

ut + a · ∇xu+ bu = 0 in [0,∞)× Rn

u(0, ·) = g(·) inRn

Hierin sind a ∈ Rn und b ∈ R konstant sowie g : Rn → R eine gegebene, stetig differenzier-
bare Funktion.
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Aufgabe 327: Charakteristikenmethode

Es seien E ⊂ R2 der abgeschlossene Einheitskreis, f eine beliebige, stetig differenzierbare
Funktion in E, sowie a ∈ R, a > 0. Das Randwertproblem

−a(xux + yuy) + u = f in E,

u = 0 auf ∂E

hat dann nach der Charakteristikenmethode eine stetig differenzierbare Lösung u = u(x, y)
zumindest in E\(0, 0).

1. Zeigen Sie, dass u beschränkt in E\(0, 0) ist.

2. Läßt sich u stetig in den Nullpunkt fortsetzten?

3. Unter welchen Bedingungen an a kann u auch stetig differenzierbar in den Nullpunkt
fortgesetzt werden (und wird damit zu einer Lösung des Randwertproblems in ganz
E)?

Aufgabe 328: Einhüllende

1. Es sei u = u (·, a), a ∈ A ⊆ R eine einparametrige Lösungsschar der Differentialglei-
chung

F (·, u,∇u) = 0.

Ferne existiere die Einhüllende z = w (x) der einparametrigen Flächenschar Ma =
{(x, z) ∈ Rn × R | z = u (x, a) , a ∈ A} mit einer C1-Funktion w. Zeigen Sie, dass w
wieder eine Lösung der Differentialgleichung ist. Die Einhüllende heißt dann auch
singuläres Integral der Differentialgleichung.

2. Bestimmen Sie das singuläre Integral der Differentialgleichung

u2
(

1 + |∇u|2
)

= 1

aus der Lösungsschar

u (x, a) = ±
(

1− |x− a|2
) 1

2
, |x− a| < 1.



45.2 Erhaltungsgleichungen

Aufgabe 329: Burgers Gleichung

Konstruieren Sie eine schwache Lösung für die Burgers Gleichung

ut +
1

2

(

u2
)

x
= 0, (t, x) ∈ (0,∞)× R

mit den Anfangswerten

u(0, x) =







1 für x ≤ 0,
1− x für 0 ≤ x ≤ 1,
0 für 1 ≤ x.

Aufgabe 330: Randextremwerte

Sei u = u(x, y) eine stetig differenzierbare Lösung der Differentialgleichung

(45.1) a(x, y)ux + b(x, y)uy = −u

im abgeschlossenen Einheitskreis B ⊂ R2. Es gelte ferner

(45.2) a(x, y)x+ b(x, y)y > 0 für alle (x, y) ∈ ∂B.

Beweisen Sie, daß u in B identisch verschwindet.

Hinweis: Zeigen Sie maxB u ≤ 0 und minB u ≥ 0, wobei für die Untersuchung des Verhaltens
von u in den Randpunkten die Bedingung (2) an die Koeffizienten ausgenutzt wird.





Kapitel 46

Multiindizes

Aufgabe 331: Polynomische Formel und verallgemeinerte geometrische Reihe

Beweisen Sie als Beispiele zur Anwendung der Multiindexschreibweise die folgenden beiden
Identitäten:

(46.1) (x1 + x2 + . . .+ xn)
m =

∑

|α|=m

m!xα

α!

(46.2)
(

1− (x1 + x2 + . . .+ xn)
)−1

=
∑

|α|≥0

|α|!xα
α!

Für welche x1, . . . , xn konvergiert die letzte Reihe absolut?
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Kapitel 47

Symbol und Klassifizierung

Aufgabe 332: Hauptsymbol

Es sei P (x, ∂) =
∑

α≤m aα(x)∂
α ein linearer partieller Differentialoperator m-ter Ordnung

mit stetigen Koeffizienten, Sm = Sm(x, ξ) sein Hauptsymbol und φ = φ(x) eine glatte
reellwertige Funktion. Zeigen Sie für |λ| → ∞ die asymptotische Entwicklung

e−iλφP (x, ∂)eiλφ = λmSm(x, φx1 , . . . , φxn) + O(λm−1)
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Kapitel 48

zweiter Ordnung

48.1 elliptische DGLs

48.1.1 Laplace-Operator

Aufgabe 333: Abschätzung harmonischer Funktionen

Beweisen Sie folgende Variante der Abschätzungen für die Ableitungen einer harmonischen
Funktion :
Ist u harmonisch in einem Gebiet G ⊆ Rn, dann gilt

|∂αu(x0)| ≤
Ck

rn+k
‖u‖L1(B)

für jede abgeschlossene Kugel B = Br(x0) ⊆ G und jeden Multiindex α der Ordnung k.
Hierbei ist

‖u‖L1(B) :=

∫

B
|u(x)| dx

die Norm von u im Raum L1(B) und

C0 :=
1

γn
, Ck :=

(2n+1nk)k

γn
, k = 1, 2, · · · ,

wobei γn das Volumen der Einheitskugel im Rn bezeichnet.

Aufgabe 334: a-priori-Abschätzung

Es sei B die abgeschlossene Einheitskugel im Rn. Zeigen Sie die Existenz einer nur von n
abhängigen Konstanten C , so dass

max
x∈B

|u(x)| ≤ C

(

max
x∈∂B

|u(x)|+max
x∈B

|∆u(x)|
)

für jede Funktion u ∈ C2(B) gilt.
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Aufgabe 335: Differenzenverfahren

In der Vorlesung wurde zum Anfangswertproblem

(48.1) ut + c ux = 0, u(0, x) = f(x)

mit c ∈ R, f ∈ C1(R) das Differenzenverfahren über einem Gitter mit den Maschenweiten
h, k > 0 und

(48.2)
v(t+ k, x)− v(tx)

k
+ c

v(t, x+ h)− v(t, x)

h
= 0, v(0, x) = f(x)

betrachtet. Zeigen Sie für c < 0 die Konvergenz. Genauer: Die Differenz w = u − v zwi-
schen der exakten Lösung und der Naherungslösung geht in allen Gitterpunkten aus einer
beschränkten Menge des R2

+ := {(t, x) ∈ R2|t ≥ 0} gleichmäßig mit h, k gegen Null,falls
c < 0, λ := k/h > 0 fest bleibt und λc ≤ 1 gilt.
Hinweis:Zeigen Sie zunächst

|w(t+ k, x)| ≤ (1− λ|c|) |w(t, x)|+ λ|c| |w(t, x+ h)|+ o(h).

Aufgabe 336: Eine spezielle Integraleigenschaft harmonischer Funktionen

Es sei u = u(x) harmonisch in einem Gebiet Ω ⊂ Rn. Ferner seien 0 < a ≤ b ≤ c reelle
Zahlen mit ac = b2 und x0 ∈ Ω mit Bc(x0) ⊂ Ω.

Zeigen Sie, dass dann gilt:
∫

|ω|=1
u(x0 + aω)u(x0 + c ω) dω =

∫

|ω|=1
u2(x0 + b ω) dω.



Aufgabe 337: elliptische Koordinaten

1. Rechnen Sie den Laplace-Operator in der Ebene auf sogenannte elliptische Koordina-
ten um. Dazu werden Koordinaten (η, ϕ) im R2 eingeführt durch

x = c cosh η cosϕ, y = c sinh η sinϕ, c = const. > 0.

Welchen Kurven in der (x; y)-Ebene entsprechen den Linien η = const. bzw. ϕ =
const.?

2. Sei ψ = ψ(x1, x2) harmonisch und ψ̃ = ψ̃(η;ϕ) entstehe aus ψ durch Umrechnen auf
elliptische Koordinaten, d.h.

ψ(x1, x2) = ψ(c cosh η cosϕ, c sinh η sinϕ) = ψ̃(η, ϕ).

Welcher Gleichung genügt dann ψ̃ ?

3. Es sei G ⊂ R2 die Ellipse

G :=

{

(x1, x2) ∈ R2

∣

∣

∣

∣

x21
a2

+
x22
b2

< 1

}

, a, b > 0.

Bestimmen Sie unter Benutzung elliptischer Koordinaten eine Lösung ψ = ψ(x1, x2)
des folgenden äußeren Dirichletproblems:

∆ψ = 0 in R2\G,
ψ = x1 auf ∂G,

|ψ| beschränkt für |x| → ∞.

Aufgabe 338: Anwendung der Greenschen Formel

Es sei u in der punktierten Kugel BR(x0) := {x ∈ Rn | |x− x0| < R} harmonisch. Zeigen
Sie:

1. Für r ∈ (0, R) ist der Wert des Integrals

∫

∂Br(x0)

(x− x0) · ∇u(x)
|x− x0|

dox

unabhängig von r.

2. Es ist
∫

∂Br(x0)
u(y) doy =

{

c0
2−nr + d0r

n−1 falls n ≥ 3,

c0r ln r + d0r falls n = 2

mit Konstanten c0, d0. Welchen Wert hat c0?



Aufgabe 339: Greensche Funktion für den Halbraum

Bestimmen Sie die Greenschen Funktionen für das Dirichletproblem für den Halbraum
H = {x = (x1, ..., xn) ∈ Rn |xn > 0},

Aufgabe 340: Grennsche Funktion für die Halbkugel

Bestimmen Sie die Greenschen Funktionen für das Dirichletproblem für die HalbkugelKR =
{x = (x1, ..., xn) ∈ Rn ||x| < R, xn > 0}.
Hinweise: Machen Sie analog zum Vorgehen bei der Berechnung der Greenschen Funktion
für die Kugel jeweils geeignete Ansätze mittels des Spieglungsprinzips.

Aufgabe 341: Grundlösungsmethode für die Poisson-Gleichung im R3

Wir betrachten im R3 die Poisson-Gleichung

−∆u(x) = f(x)

mit

f(x) =

{

1 für |x| < 1,

0 sonst
.

Bestimmen Sie mit der Fundamentallösungsmethode eine Lösung.

Aufgabe 342: Hintereinanderausführung und subharmonische Funktionen

1. Es seien B eine reelle (n × n)-Matrix, c ∈ R, Q : Rn → Rn mit Q(x) = Bx + c und
u ∈ C2(Rn). Zeigen Sie

∆(u ◦Q) = (L0u) ◦Q,
wobei

L0 :=
n
∑

i,k=1

aik
∂2

∂xi∂xk

ist und die aik die Elemente der Matrix A := BBT sind. Insbesondere ist also ∆(u ◦
Q) = (∆u) ◦Q, wenn B eine orthogonale Matrix ist.

2. Sei φ : R → R eine glatte und konvexe Funktion. Ferner sei u harmonisch in ei-
nem Gebiet G ⊆ Rn. Zeigen Sie: Die Funktionen v := φ ◦ u und w := |∇u|2 sind
subharmonisch. in G



Aufgabe 343: Integralabschätzung

Sei G ⊆ Rnein beschränktes Gebiet, für das der Gaußsche Satz gilt.
Es sei u ∈ C2(Ḡ) eine reelle Funktion mit u = 0 auf ∂G.
Dann gilt für jedes ǫ > 0:

2

∫

G
|∇u(x)|2dx ≤ ǫ

∫

G
(△u(x))2dx+

1

ǫ

∫

G
u2(x)dx

Aufgabe 344: Kugelpotential

Es sei V (x) das Newtonsche Volumenpotential einer offenen Kugel BR ∈ R3 vom Radius
R > 0 um den Nullpunkt mit der Dichte ρ(x) = |x|2 (|x| bezeichnet die euklidische Norm
von x ∈ R3) im Aufpunkt x, d.h.

V (x) =

∫∫∫

BR

ρ(y)

|x− y|dy.

1. Berechnen Sie V (x) für alle x ∈ R3 .

2. Für welche x ∈ R3 ist V = V (x) zweimal stetig differenzierbar?

3. Bestätigen Sie durch direktes Nachrechnen mittels a)

∆V = 0 in R3\BR, ∆V = −4π|x|2 in BR

Aufgabe 345: Maximumprinzip

Es sei Ω ⊂ Rn ein beschränktes, nichtleeres Gebiet.

1. Sei u ∈ C2(Ω)∩C(Ω) , g := u|∂Ω und −∆u(x)+u(x)a(x) = 0 (∗) für x ∈ Ω mit einer
positiven Funkion a. Zeigen Sie für x ∈ Ω:

(∗∗) min {0,min g} ≤ u(x) ≤ max {0,max g}

2. Machen Sie sich mir Hilfe der gewöhnlichen Differentialgleichung −u′′ + u = 0 klar,
dass man in a) nicht min g ≤ u(x) ≤ max g erwarten darf.

3. Sei u in Ω eine harmonische Funktion, deren Gradient stetig auf Ω fortsetzbar ist.
Zeigen Sie, dass mindestens eine Maximalstelle von |∇u|2 auf ∂Ω liegt.



Aufgabe 346: Minimumprinzip

Es sei Ω ⊆ Rn ein beschränktes, nichtleeres Gebiet, T ⊆ Ω und Ω \ T sei offen.
Ferner sei u : Ω \ T → R eine Funktion mit den folgenden drei Eigenschaften:

(1) u ist harmonisch in Ω \ T .
(2) Für alle x0 ∈ ∂Ω \ T gilt u(x) → 0, wenn x in Ω \ T gegen x0 strebt.
(3) Es gibt eine harmonische Funktion w : Ω \ T → (0,∞) so, dass für alle ξ ∈ T gilt:
|u(x)|/w(x) → 0, wenn x in Ω \ T gegen ξ strebt.

Zeigen Sie, dass dann u = 0 in Ω \ T ist.

Aufgabe 347: Neumann-Funktion

1. Die Neumannsche Funktion N = N(x, y) für ein Gebiet Ω ⊂ Rn wird definiert wie
die Greensche Funktion für das Dirichlet-Problem mit dem Unterschied, dass die
Bedingung G(x, y) = 0 für x ∈ ∂Ω, y ∈ Ω ersetzt wird durch ∂N

∂n (x, y) = const. für
x ∈ ∂Ω, y ∈ Ω. Formulieren und beweisen Sie mit Hilfe der 2. Greenschen Formel
eine Darstellung für die Lösung des Neumann-Problems mit Hilfe der Neumannschen
Funktion. Inwieweit ist die Konstante bestimmt?

2. Lösen Sie das Neumann-Problem für eine Kugel im R3. Gegeben ist eine Funktion
h : ∂BR(0) → R mit

∫

∂Br(0)
h(x)dox = 0. Gesucht ist eine Darstellung (z. B. mittels

a)) der Lösung u = u(x) von

∆u = 0 in BR(0)

∂u

∂n
= h in ∂BR(0).

Aufgabe 348: Separation für EW-Problem

Bestimmen Sie durch Separation der Variablen die Eigenwerte und Eigenfunktionen des
Rand-Eigenwertproblems im Rechteck R := [0, a]× [0, b] ⊆ R, a, b > 0:

∆u = −λu in R

u = 0 auf ∂R



Aufgabe 349: Separationsansatz im Kreis

Wir betrachten das Randwert–Problem für die Laplace–Gleichung (Dirichlet–Problem) in
einem Gebiet Ω des R2 für eine Funktion f ∈ C(∂Ω),

(P) u ∈ C(Ω) ∩ C2(Ω),

∆u ≡ uxx + uyy = 0 in Ω,

u = f auf ∂Ω.

Lösen Sie (P) in der Einheitskreisscheibe B1 := {x : ‖x‖ < 1} für die folgenden Randver-
teilungen: (a) f1(x, y) = 1, (b) f2(x, y) = x3.

Aufgabe 350: Temperaturverteilung auf Kugelschale

Eine sphärische Schale mit dem inneren Radius 1 und dem äußeren Radius 2 habe eine
stationäre (d. h. zeitunabhängige) Temperaturverteilung. Die innere Randfläche werde auf
einer Temperatur von 100◦C gehalten, auf dem äußeren Rand gelte ∂u

∂n = γ, wobei n die
äußere Normale und γ < 0 konstant ist.

1. Bestimmen Sie die Temperaturverteilung in der Schale.

2. Kann γ so gewählt werden, dass die Temperatur auf dem äußeren Rand 20◦C beträgt?

48.2 hyperbolische DGLs

48.2.1 Wellengleichung

Aufgabe 351: Eingespannte Saite

Eine homogene, an x = 0, x = l eingespannte
Saite habe zum Zeitpunkt t = 0 die Form einer
Parabel, die bzgl. der in x = l

2 erreichten Senk-
rechten symmetrisch die Höhe h hat. Suchen die
Auslenkung u = u(t, x) eines Punktes der Sai-
te von der geradlinigen Gleichgewichtslage unter
der Voraussetzung, dass die Anfangsgeschwindig-
keit = 0 ist.



Aufgabe 352: Parallelogrammbedingung

Bestimmen Sie die Lösung u = u(t, x) des charakteristischen Anfangswertproblems für die
eindimensionale Wellengleichung

(48.3) utt − a2uxx = 0.

Genauer: Auf zwei sich schneidenden Charakteristiken

x+ at = α, x− at = β

seien die Werte der gesuchten Funktion u vorgegeben:

u(t, α− at) = f(t), u(t, β + at) = g(t)

mit zweimal stetig differenzierbaren Funktionen f, g, so dass im Schnittpunkt der Charak-
teristiken die Werte übereinstimmen.

1. Bestimmen Sie die Lösung u in Abhängigkeit von den Funktionen f und g.

2. Bestätigen Sie für u die Formel

u(t0, x0) + u(t1, x1) = u(t2, x2) + u(t3, x3)

für jedes „charakteristische Parallelogramm“, d. h. (t0, x0), (t1, x1) und (t2, x2), (t3, x3)
sind gegenüberliegende Eckpunkte in einem Parallelogramm, dessen Seiten auf Cha-
rakteristiken der Wellengleichung liegen.

3. Zeigen Sie umgekehrt, dass jede dreimal stetig differenzierbare Funktion u = u(t, x),
die die Eigenschaft b) für alle charakteristischen Parallelogramme besitzt, eine Lösung
der Wellengleichung ist.

Aufgabe 353: Kugelkoordinaten

Rechnen Sie die Differentialoperatoren

Lu = uxx + uyy + uzz + c(uxy + uxz + uyz), c = const. ∈ R

(x, y, z kartesische Koordinaten im R3) auf räumliche Polarkoordinaten (Kugelkoordinaten)
um.

48.3 parabolische DGLs

Aufgabe 354: Separationsansatz

Gesucht ist u = u (t, x), so dass
t · ut = uxx + 2u

unter der Randbedingung
u (t, 0) = u (t, π)



48.3.1 Wärmeleitungsgleichung

Aufgabe 355: Lösung der Wärmeleitungsgleichung im 1. Quadranten

Sei g : [0,∞) → R mit g(0) = 0. Zeigen Sie, dass

u(x, t) =
x√
4π

∫ t

0

1

(t− s)3/2
e
− x2

4(t−s) g(s) ds, x > 0, t > 0

eine Lösung des folgenden Rand/Anfangswertproblems für die Wärmeleitungsgleichung

ut − uxx = 0 in (0,∞)× (0,∞),

u(x, 0) = 0 für x > 0,

u(0, t) = g(t) für t > 0

liefert. Welche Regularität für g ist ausreichend?
Hinweis: Betrachten Sie v(x, t) = u(x, t) − g(t) und setzten Sie v für negative x-Werte
geeignet fort.

Aufgabe 356: spezielle Lösung der Wärmeleitungsgleichung

Sei v = v(z), z > 0 eine reelle Funktion einer reellen Variablen z und u = u(x, t) = v(x
2

t )
für x ∈ R, t > 0.

1. Zeigen Sie: u genügt genau dann der eindimensionalen Wärmeleitungsgleichung

ut = uxx,

wenn
4zv′′(z) + (2 + z)v′(z) = 0, z > 0.

2. Zeigen Sie, daß die allgemeine Lösung der letzten Gleichung für v gegeben wird durch

v(z) = c ∗
z
∫

0

e−
1
4
s ∗ s− 1

2 ds+ d

mit Konstanten c, d.

3. Differenzieren Sie v(x
2

t ) nach x und bestimmen Sie die Konstante c so, daß der Wär-
meleitungskern im R1 entsteht.
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Kapitel 49

Abgeschlossene Mengen

Aufgabe 357: Abschluss als Durchschnitt abgeschlossener Mengen

Beweisen Sie den folgenden Satz:
Für jede Teilmenge A ⊆M eines metrischen Raumes (M,d) ist der Abschluss Ā (gleich A
vereinigt mit der Menge der Randpunkte) darstellbar als

Ā =
⋂

B∈A
B, wobei A = {B | A ⊆ B ⊆M,B abgeschlossen} ,

d.h. Ā ist die kleinste A umfassende und abgeschlossene Menge in M .
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Kapitel 50

Häufungspunkte

Aufgabe 358: Stammbruchsumme

M =
{

x ∈ R | x =
1

m
+

1

n
, n,m ∈ N

}

.

1. Zeigen Sie, dass M weder offen noch abgeschlossen ist.

2. Bestimmen Sie alle Häufungspunkte von M .

Hierbei wird R als normierter Raum mit dem absoluten Betrag als Norm betrachtet.
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Kapitel 51

kompakte Mengen

Aufgabe 359: Durchschnitt kompakter Mengen

Es seien (M,d) ein metrischer Raum und Kn ⊆ M , n ∈ N kompakte Teilmengen von M
mit

⋂∞
n=1Kn = ∅.

1. Beweisen Sie, dass dann unter den Mengen Kn, n ∈ N auch endlich viele Mengen
Kn1 , . . . ,Knm existieren mit

Kn1 ∩Kn2 ∩ · · · ∩Knm = ∅.

2. Gilt die entsprechende Aussage auch, wenn nur die Abgeschlossenheit und Beschränkt-
heit der Mengen Kn vorausgesetzt wird?
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Kapitel 52

Offene Mengen

Aufgabe 360: Durchnitt mit offenen Mengen

1. Es sei A eine offene Menge in einem metrischen Raum M . Zeigen Sie, dass für jede
Teilmenge B von M die Beziehung A ∩B ⊆ A ∩B gilt.

2. Geben Sie ein Beispiel zweier Intervalle A,B auf der reellen Zahlengeraden an, für
die die Menge A ∩B nicht in der Menge A ∩B enthalten ist.

3. Geben Sie auf der reellen Zahlengeraden Beispiele offener Mengen A,B an, so dass
die vier Mengen A ∩ B, A ∩ B, A ∩B und A ∩ B sämtlich voneinander verschieden
sind.
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Kapitel 53

Stetigkeit

Aufgabe 361: Stetigkeit und Topologie

Seien X und Y metrische Räume und f : X 7→ Y eine stetige Abbildung.

1. Geben Sie wenigstens drei mögliche Definitionen von Stetigkeit an und beweisen Sie
deren Äquivalenz.

2. Beurteilen Sie den Wahrheitswert folgender Aussagen, indem Sie diese beweisen oder
ein Gegenbeispiel angeben.

i) Die Bilder beschränkter Mengen unter f sind wieder beschränkt.

ii) Die Urbilder beschränkter Mengen unter f sind wieder beschränkt.

iii) Die Bilder offener Mengen unter f sind wieder offen.

iv) Die Urbilder offener Mengen unter f sind wieder offen.

v) Die Bilder abgeschlossener Mengen unter f sind wieder abgeschlossen.

vi) Die Urbilder abgeschlossener Mengen unter f sind wieder abgeschlossen.

vii) Die Bilder kompakter Mengen unter f sind wieder kompakt.

viii) Die Urbilder kompakter Mengen unter f sind wieder kompakt.

3. Wie ändern sich die Aussagen, wenn X und Y normierte Vektorräume sind und f
auch noch linear ist?
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Kapitel 54

Zusammenhang

Aufgabe 362: Beispiel für einen nicht zusammenhängenden topologischen Raum

Definition: Ein topologischer Raum (X, τ) heißt zusammenhängend genau dann, wenn
keine offenen, disjunkten, nichtleeren Mengen U, V ∈ τ mit X = U ∪ V existieren.
(X, τ) heißt bogenzusammenhängend genau dann, wenn für alle x, y ∈ X eine stetige Ab-
bildung ω : [a, b] ⊂ R → X mit ω(a) = x, ω(b) = y existiert. ω heißt Weg von x nach
y.
A ⊂ X heißt zusammenhängend (bogenzusammenhängend) genau dann, wenn (A, τA) zu-
sammenhängend (bogenzusammenhängend) ist. D. h. A ⊂ X ist zusammenhängend, genau
dann wenn es keine offenen Mengen U, V ⊂ X gibt, so dass

• A ⊆ U ∪ V ,

• A ∩ (U ∩ V ) = ∅,

• A ∩ U 6= ∅, A ∩ V 6= ∅.

1. Sei R2 mit der Standardtopologie versehen. Betrachten Sie den Teilraum

X := {(x, y) ∈ R2 |x > 0, y = 0} ∪ {(x, y) ∈ R2 |x > 0, y =
1

x
}

versehen mit der Relativtopologie. Ist X zusammenhängend? Ist X wegzusammen-
hängend?

2. Zeigen Sie, dass die zusammenhängenden Mengen von R gerade die Intervalle sind.
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