Teil 1

Algebra






Kapitel 1

Gruppen und Halbgruppen

Aufgabe 1: Kiirzbarkeit in Halbgruppen

Sei H eine Halbgruppe. Ein Element z € H heifst linkskiirzbar (rechtskiirzbar), wenn fiir
alle a,b € H gilt: Aus za = zb (ax = bzx) folgt a = b. x heift kiirzbar, wenn z links-
und rechtskiirzbar ist. Man sagt, in H gilt die Kiirzungsregel, wenn jedes Element von H
kiirzbar ist. Zeigen Sie:

a) In jeder Gruppe G gilt die Kiirzungsregel.

b) H ist Gruppe genau dann, wenn H ein linksneutrales Element e besitzt und wenn es
fiir jedes x € H ein 2/ € H gibt mit 2’z = e.

c) Sei H eine endliche Halbgruppe. H besitzt genau dann ein linksneutrales (rechtsneu-
trales, neutrales) Element, wenn H ein linkskiirzbares (rechtskiirzbares, kiirzbares)
Element besitzt.

d) Eine endliche Halbgruppe H ist genau dann eine Gruppe, wenn in H die Kiirzungsregel
gilt.

Hinweis: Fiir x € H betrachte man die durch h — xh bzw. h — hx fiir alle h € H gegebenen Abbildungen

Az, po + H — H (Linkstranslation, Rechtstranslation mit =) und beachte, dass = genau dann linkskiirzbar

bzw. rechtskiirzbar ist, wenn A\, bzw. p, injektiv ist.







Kapitel 2

Korper

Aufgabe 2: Korper mit 2 und 3 Elementen

Bestimmen Sie alle Koérper mit 2 und 3 Elementen.







Kapitel 3

Restklassen

Aufgabe 3: Division mit Rest

Sein € Z, n # 0. Zeigen Sie, dass es fiir jedes m € Z eindeutig durch m bestimmte ¢q,r € Z
gibt mit

m=qn+r und 0<7r<|n|
q heifst partieller Quotient und r Rest der Division von m durch n. Mitunter bezeichnet
man diesen Rest r mit r,(m).

Aufgabe 4: Division mit Rest II

Sei n € Z. Fiir m € 7Z setzen wir:

(m) m wennn =20
ro(m) = )
" r  wennn #0

wobei 7 im Fall n # 0 die eindeutig bestimmte ganze Zahl ist mit 0 < r < |n| und
m = gn + r fiir geeignetes q € Z, (siehe ,Division mit Rest I%).

Zeigen Sie:
a) Fir a,b € Z gilt rp(a) = rp(b) genau dann, wenn n|a — b.
b) Fiir alle a,b € Z gilt
rm(a+0) = rp(rp(a) +b) = rp(a+ra(b) = ru(rp(a) 4+ ry(b)) und

ro(a-b) = rp(rp(a)-b) = rp(a-ra(b)) = rp(ra(a) - ra(b)).

c) Die Relation ,,a = b <= r,,(a) = r,(b)“ ist eine Aquivalenzrelation iiber Z. Die dazuge-
horigen Aquivalentklassen heifien auch Restklassen modulo n.

7



Aufgabe 5: Division mit Rest 111

Fir n € N setzen wir

[ Z n=>0
"T{01,. 0] =1} n#£0

und definieren zweistellige Operationen @,, und ®,, auf L,, indem wir fir alle a,b € L,
setzen (siehe Division mit Rest IT)

a®pb:=ry(a+b) und a®pb:=r,(a-b).

(Da offensichtlich L, = L_,,, ®, = ®_, und ®,, = ®_,, kann man sich bei den nachfol-
genden Uberlegungen auf den Fall n € N beschrinken.)

Zeigen Sie:
a) (Lyp,®p, ®p) ist fir alle n € Z ein kommutativer Ring mit Einselement.
b) L, ist genau dann ein Korper, wenn n Primelement ist.

Bemerkung: Statt @,, und ®,, schreibt man kurz 4+ und -.




Kapitel 4

Ringe

141 C(R)

Aufgabe 6: Definition und Eigenschaften von C(R)

Sei R ein Ring. In R? = R x R fiihren wir zwei zweistellige Operationen 4+ und - ein, indem
wir fiir alle (r1,72), (s1,52) € R X R setzen

(ri,7m9) + (s1,82) = (r1+ 81,72+ s2) und
(r1,7m2) - (s1,82) = (1151 — 1282, 7152 + 1r251).
Zeigen Sie:

1. (R?,+,-) ein Ring ist, der genau dann kommutativ ist, wenn R es ist. Man bezeichnet
ihn mit C'(R).

2. C(R) besitzt ein Einselement genau dann, wenn R ein Einselement besitzt.

3. Identifiziert man =z € R mit (z,0r) € C(R), so ist R Unterring von C'(R). (Damit
darf man z. B. O¢(g) = Or setzen usw.)

4. Sei R kommutativ. Definiert man fiir v := (a,b) € C(R) die Norm von u durch
R > N(u) := a® +v* (= (a,b)(a, —b) wegen der in c) definierten Identifizierung), so
gilt N(uv) = N(u)N (v) fir alle u,v € C(R).

5. Sei R kommutativ. Fir u € C(R) gilt u € C(R)* genau dann, wenn N (u) € R*“.
6. Sei R kommutativ. Die folgenden Bedingungen sind &quivalent:

(i) C(R) ist Integritétsring (Korper)
(i) R ist Integritéatsring (Korper) und N(u) # Og fir alle w € C(R) \ {Or}
(i) N(u) # O (N(u) € R*) fiir alle u € C(R) \ {0}.

“Fiir einen Ring R bezeichnet R* die Teilmenge der beziiglich der Multiplikation invertierbaren Elemente
von R




4.2 Homomorphismen

Aufgabe 7: Spurhomomorphismus

Sei R ein kommutativer Ring mit Einselement und n € N*. Ist f : R™" — R ein R-
Homomorphismus mit f(AB) = f(BA) fiir alle A,B € R™", so gibt es ein 7 € R mit
f=r-spur (d. h. f(A) =rspurd fiir alle A € R™").

4.3 Ideale

Aufgabe 8: Ideale in Z

Eine Teilmenge I von Z heift Ideal von Z, wenn I # () und wenn fiir alle a € Z und alle
x,y €1 gilt ax,x+y € I.

Z. B. sind {0} und Z Ideale von Z. {0} wird Nullideal genannt und oft kurz mit O
bezeichnet. Offensichtlich gilt O C I fiir jedes Ideal I von Z.

Fiir eine Teilmenge X von Z setzen wir

X =
7X = o, n
>t ez | neNa,...,an € Z,x1,...,xp € X}, X

Zeigen Sie:
a) Fiir jede Teilmenge X von Z ist ZX Ideal von Z.

b) Ist Z eine Menge von Idealen von Z, so ist ();c7 I Ideal von Z.

c) Sei X C Z und 7 die Menge aller Ideale I von Z mit X C I. Dann gilt ZX = ;o7 1.

d) Fiir ein Ideal I von Z gilt I NNt # () genau dann, wenn I # O.




Aufgabe 9: Ideale in Z

Fiir z € Z setzen wir Zz := Z{z} ( = {az | a € Z}), s. Aufgabe ,Ideale in Z.
Zeigen Sie:
a) Seien m,n € Z. Dann gilt m|n genau dann, wenn Zn C Zm.
Ferner sind dquivalent:
(i) n/m und min
(ii) Zm =Zn
(iii) m = +n.
Man verwende, dass fiir a,b € Z gilt: Wenn ab = 0, so folgt a = 0 oder b = 0. Wenn ab = 1, so folgt
a="b==l1.
b) Fiir jedes Ideal I von Z gibt es ein eindeutig bestimmtes m € N mit I = Zm.

Unter Verwendung der Aufgabe ,Ideale in Z“ betrachte man I " NT. Im Fall I # O benutze man

Division mit Rest.

4.4  Matrizenringe

Aufgabe 10: Beispiel fiir einen kommutativen Unterring

Zeigen Sie:

1. Die Teilmenge der quadratischen (2, 2)-Matrizen mit der Gestalt

A:<a b) mit a,b € R
b a

bildet einen kommutativen Unterring im Ring der (2,2)-Matrizen.

2. Die Teilmenge der quadratischen (2,2)-Matrizen mit der Gestalt

A—(a b) mit a,b€R
—b a

bildet einen kommutativen Unterring im Ring der (2, 2)-Matrizen.




4.5 Nullteiler

Aufgabe 11: Integritédtsringe

Sei R ein Ring. x € R heift linker (rechter) Nullteiler von R, wenn es ein y € R\ {Or} gibt
mit xy = O (yz = Or). x heifst Nullteiler von R, wenn x linker oder rechter Nullteiler von
R ist. R heifit nullteilerfrei, wenn R aufser O keine Nullteiler besitzt. Ein kommutativer
nullteilerfreier Ring R mit FEinselement 1r # Or heifit Integritdtsring. Zeigen Sie:

a) Jeder endliche nullteilerfreie Ring mit wenigstens zwei Elementen ist Schiefkorper.
Bemerkung: Nach einem Satz von Wedderburn ist jeder derartige Ring bereits kommutativ, also ein

Korper.
b) Jeder endliche Integrititsring ist ein Korper.

c) Fiir alle n € N mit n > 2 sind die folgenden Bedingungen dquivalent (s. Ubungsaufgabe
30):

(i) Ly, ist Integritédtsring (ii) L, ist Korper (iii) n ist Primzahl.




4.6 Teilbarkeit

Aufgabe 12: Grofite gemeinsame Teiler und kleinste gemeinsame Vielfache 1

Sei X C Z.
n € Z heifst grofter gemeinsamer Teiler von X (ggT X)), wenn folgendes gilt:

e n|z fir alle x € X und
e s|n fiir alle s € Z mit s|x fiir alle z € X.

n € Z heifst kleinstes gemeinsames Vielfaches von X (kgV X)), wenn folgendes gilt:

e z|n fiir alle x € X und
e nls fiir alle s € Z mit z|s fiir alle z € X.

Mit GgT X (KgV X) bezeichnen wir die Menge aller grofiten gemeinsamen Teiler (kleinsten
gemeinsamen Vielfachen) von X.

Offensichtlich gilt GgT () = GgT {0} = {0} = KgVZ und GgTZ = {1,—-1} = KgV .
(Hierzu verwendet man: Wenn fiir a € Z gilt a| + 1, so folgt a = £1.)

Zeigen Sie:

a) GgT X =GgTZX

b) Sei I Ideal von Z. Fiir n € Z sind &quivalent:
(i) ne GgTI
(ii) n € I und n|m fir alle m € I
(iii) I = Zn.

c) KgVX = GgT (,cx Z.

Insbesondere sind GgT X und KgV X fiir jede Teilmenge X von Z nicht leer. Weiterhin
gilt fiir n € GgT X: Es gibt a1,...,a, € Z und 21,...,2, € X mit n = a1x1 + ... + ap7p.
Bemerkung: Nach dem Darstellungssatz fiir Ideale in Z gibt es eindeutig bestimmte m,n € N mit ZX = Zn
und (), ¢y Zz = Zm. Dann gilt GgTX = {n,—n} und KgVX = {m, —m}. Meist bezeichnet man n als

den gréfsten gemeinsamen Teiler und m als das kleinste gemeinsame Vielfache von X und setzt ggTX :=n

sowie kgV X :=m.







Teil 11

Analysis
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Kapitel 5

Folgen

5.1 Funktionenfolgen

5.1.1 gleichmaessige Konvergenz

Aufgabe 13: Charakteristische Funktion

Fir M C X wird die charakteristische Funktion xas wie folgt definiert:

1 fir ze M
xm(z) =

0 fir z¢ M

1. Berechne
lim x[_pqn(z) fir z€R,neN.
n—o0 ?

Ist die Konvergenz gleichméfig auf R?

2. Zeige, dass die Funktionenfolge {f,}, .y, definiert durch

fn(z) == ei|x‘X[fn,n] (z)

gleichméRig auf R gegen die Funktion e~ l*! konvergiert.

Aufgabe 14: Ein Beispiel zur gleichméfsiigen Konvergenz

Man untersuche die Funktionenfolge LN
. 0.8
= eN 0.6
fn(@) 14 na’ " ‘

0.4
auf punktweise und gleichméfige Konvergenz in | 951\
den Intervallen

0
1. [0,1]

2. (0,1]

3. [¢,1],0<g<1
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Aufgabe 15: Eine Aufgabe zur gleichmiftigen Konvergenz

sin(nx)
27L

Man zeige, dass die Summe » 7, eine stetige Grenzfunktion besitzt und berechne

diese!

5.2  Zahlenfolgen

5.2.1 Anwendung der Definition

Aufgabe 16: Arithmetisches und geometrisches Mittel

Beweisen Sie:

L. Ist {an}, N eine konvergente Folge komplexer Zahlen, so gilt

. . artax+...+tan
lim a, = lim .
n—o0 n—o0 n

2. Ist {bn},, cN eine konvergente Folge positiver reeller Zahlen, so gilt

lim b, = lim /by -ba-...-by.
n—00 n— 00

Aufgabe 17: Cauchy-Folgen

1. Fiihren Sie die Einzelheiten fiir den Beweis der folgenden Behauptung aus der Vorle-
sung aus: Jede komplexe Cauchyfolge ist beschrankt.

2. Ist die komplexe Zahlenfolge {an}, 1y mit
ap = (=1)" +4"

eine Cauchyfolge?

Aufgabe 18: (¢,ng)-Abschitzungen

Zeigen Sie, dass die nachstehenden Zahlenfolgen {an}neN gegen einen Grenzwertwert a
konvergieren, und bestimmen Sie zu jedem ¢ > 0 ein ng = no(e), so dass |a — a,| < € fir
alle n > ng gilt (sogenannte (g, ng)-Abschitzung):

2

. n
L=
" n2 4242’
2n3i — 4nt

2. ap = —F——F——7,
nt+3ni—1

1\ 10
3. ap = <1+) .
n

Achtung: In b) bezeichnet i die imaginére Einheit, die Zahlenfolge ist also komplex!




Aufgabe 19: k-te Wurzel u. a.

1. Es sei {an}nEN eine reelle oder komplexe Nullfolge. Zeigen Sie, dass dann auch

{ﬁ/an}n cN mit einem festen k € N eine Nullfolge ist.
Ist { w"/an}n cN ebenfalls eine Nullfolge? (Beweis oder Gegenbeispiel!).

. Es seien {z,}, .N> {¥nl},eN zWei komplexe Nullfolgen, so dass

ol + |y1] + ...+ |yn| £ K

fir alle n = 0,1,... mit einer festen Schranke K gilt. Zeigen Sie, dass dann auch die

Folge {zn]}, oy mit
Zpn = T0Yn + T1Yn?1 T ...+ Tn Yo

eine Nullfoge ist.

Aufgabe 20: Anwendungen der geometrischen Folge

. Qp

Es sei a > 0. Berechnen Sie die Grenzwerte lim,,_,~, a,, fir

a2n
I = T g
a —a "
" e
an

T I (1 +dby

5.2.2

liminf und limsup

Aufgabe 21: Eigenschaften von liminf und lim inf

Sei {an}, Ny eine reelle Zahlenfolge.

Man zeige:
1.
lirginf an = le inf {ay | £ > n} =sup{inf{ay | & >n} | n e N}
2.

limsup a, = h_)m sup{ax | k > n} =inf{sup{ay | £k >n} | n e N}
n—oo

n—oo




Aufgabe 22: Hiufungswerte

Finde alle Haufungswerte der Zahlenfolge

Ty = i (sinn—ﬂ—i—cosn—w), n € NU {0}

und bestimmen Sie lim sup,, , ., © und liminf,, ;. zy,.

Aufgabe 23: Hiaufungswerte und Limesmengen

1. Bestimmen Sie die Limesmenge .Z(F') der Folge F' = {a, — |an|}, cy mit den Fol-

gengliedern a,, := 4" /7. Dabei bezeichnet |z| den grofsten ganzen Anteil einer reellen
Zahlz,d. h.esist N3 |z] <z < [z] + 1.

. Fithren Sie die Einzelheiten fiir den Beweis der folgenden Behauptung aus: Jeder
Héufungspunkt der Limesmenge -Z(F) einer einer komplexen Zahlenfolge F' gehort

wieder zur Limesmenge .Z(F).

Aufgabe 24: Rechnen mit oberen Grenzwerten

1. Es seien {an}, N {bn},cN Deschrinkte reelle Folgen. Zeigen Sie:

lim inf a,, 4 lim sup b,, < limsup(a,, + b,) < limsup a,, + lim sup b,,.
n—0o0 n—00 n—00 n—00 n—00

2. Bestimmen Sie liminf,, o a,, und limsup,,_, . a, fiir die Folgen {a,}, -y mit

anp = (1+(=1)") (_1>n(n+1)/2 baw. @, = (1 + (—2711)”>3n.

Aufgabe 25: Vergleich von Wurzel- und Quotientenkriterium.

Gegeben sei eine Zahlenfolge
1. Beweisen Sie:

Ap+1 an+1

lim inf
n—o0

< liminf {/|ay,| < limsup {/|a,| < limsup
n—oo n—00

n n—oo n

2. Geben Sie eine Folge an, fiir die in der Formel kein Gleichheitszeichen auftritt.




Aufgabe 26: Polizistenregel

Zeigen Sie die Polizistenregel:
Gilt

lim a, = a= lim b, und an < cp < b, firalle n > nyg,
n—oo n—oo

so konvergiert auch die Folge {c¢,} und es gilt

lim ¢, = a.
n—oo

Aufgabe 27: Potenzfunktion versus Exponentialfunktion

Bestimmen Sie fiir festes k € N die folgenden Grentwerte
1. limy, o0 2 fiir b> 1
2. limy, 00 ¥ a™ fiir |a| < 1

Hinweis: Zeigen Sie zunéchst a) fiir k=1 und leiten Sie die anderen Ergebnisse davon ab.

5.2.3 rekursiv definierte Folgen

Aufgabe 28: Eine rekursiv definierte Folge in C

(2)
Zn + —
Zn

Untersuchen Sie die rekursiv definierte Folge

N

(51) Zn+l1 =

in Abhéngigkeit vom Startwert 0 # z; € C.

monoton beschrankte

Aufgabe 29: Arithmetisches Mittel

Es seien 29,71 € R und die Folge {z,}, .y sei rekursiv definiert durch

Tn + Tp-1

5 fir n € N.

Tn41 =

L. Zeigen Sie, das die Folge {z,}, .y konvergiert.

2. Berechnen Sie lim,, .o, xp,.




Aufgabe 30: Konvergenzuntersuchung

Ist die Zahlenfolge

konvergent?

Aufgabe 31: fast monotone Folgen

Eine reelle Zahlenfolge {ay, },>1 werde rekursiv definiert durch

1
a; = 2, anH:\/an—l—E fir n=1,2,....

Zeigen Sie, dass die Folge konvergiert und bestimmen Sie den Grenzwert.

Aufgabe 32: Konvergenz rekursiv definierter Folgen

Gegeben sei ein ¢ > 0, ein Startwert zo € (0, 2)

und eine rekursiv definierte Folge: 2,41 := 2,(2 — czy,) (*)

Man zeige:
e a) Die Folge {x,} ist fiir n > 1 monoton wachsend und beschrinkt.
e b) Es ist lim, 00 x,, = %

1-(1—c)?"

e ¢) Im Fall ¢ € (0,2) und zp = 1 gilt: x,, = fir n € N.

Aufgabe 33: Eine monoton wachsende Folge

Sei 0 < b € R gegeben, wir definieren rekursiv die Folge

a = \/I;
Gp+1 = \/b+an

Zeigen Sie, dass die Folge konvergiert und berechnen Sie deren Grenzwert!

Aufgabe 34: Monotone Teilfolgen

Es sei ag > 0 vorgegeben und die Folge

1

5.2 =
( ) Gp41 1+a,

rekursiv definiert.

Besitzt die Folge {a,} einen Grenzwert ? Wenn ja, dann berechne man diesen.




Aufgabe 35: Quadratwurzel

Es seien zg und A positive reelle Zahlen. Ferner sei eine Folge {x,,} rekursiv definiert durch:

1
Tn = ) Tn—1+

A ), (n €N).

n—1
1. Zeigen Sie, dass x, > VA, (n € N).
2. Zeigen Sie, dass x,+1 < Xy, (n € N).

3. Zeigen Sie, dass lim,,_, &, existiert.

4. Zeigen Sie, dass limy,, 00 T, = VA.

Aufgabe 36: Einschachtelung fiir rekursive Folgen

Es seien a,b > 0 gegeben und die Folge {an}neN werde rekursiv definiert durch

ag=a, a1 =0b, anio=+ /anr1++a, firn=0,1,...

Zeigen Sie, dass die Folge {a,}, py konvergiert und bestimmen Sie den Grenzwert.

5.2.4 Teilfolgen

Aufgabe 37: Existenz einer speziellen Teilfolge

Besitzt die Folge {ay}n>1 mit a,, = v/n + 1 — y/n eine Teilfolge {an, };>1, die mit der Folge
{(v2 = 1)!};>1 iibereinstimmt? Wenn ja, geben Sie die ersten 5 Werte fiir n; an.

Aufgabe 38: Hiufungswerte

Finde alle Haufungswerte der Zahlenfolge

xn:ni5(sin%+cos%), n € NU {0}

und bestimmen Sie limsup,,_, ., ©, und liminf,,_, zp,.







Kapitel 6

Funktionen

6.1

einer Variablen

6.1.1 Differentialrechnung

Anwendungen

Extremwertaufgaben

Aufgabe 39: Ein Minimalproblem

Es sei f: (a —e,b+¢) — R eine differenzierbare Funktion mit a < b, ¢ > 0 und f(a) =
f(b) =0, f(z) >0fa . a<x<bh.
Es sei fiir a < zy < z1 < b die Funktion Dy ,, : [a,b] — R definiert durch

Dy (1) = V/(t = 20)? + ()2 + V/(t — 21)? + f(2)?.
a) Gib eine geometrische Interpretation von D(t).

b) Zeige: Fiir alle a < xg < x1 < b existiert ein £ € (a, b) mit

Dy 2, €)= teiﬁsz] Dag oy (t) -

). Was kann man iiber die Winkel

c) Sei T' die Tangente von f in dem Punkt (&, f(€)
(€)) sowie zwischen T und der Strecke

zwischen 7" und der Strecke von (zg,0) nach (&, f
von (x1,0) nach (&, f(§)) sagen?

d) Gib eine geometrische Interpretation des Ergebnisses aus c).

Aufgabe 40: Kegelvolumen

Aus einem Kreis wird ein Sektor mit dem Zentriwinkel a herausgeschnitten. Der Sektor
wird zu einem Kegel zusammengerollt. Bei welcher Groke des Winkels a wird das Volumen
des Kegels am grofiten sein?
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Aufgabe 41: Maximaler Sichtwinkel

Auf einem der beiden Schenkel eines Winkels «,0 <

a < 3, sind zwei Punkte A, B markiert mit den vom

Scheitelpunkt S aus gemessenen Abstédnden a,b(a < b).

Gesucht wird auf dem anderen Schenkel der Punkt X, 8
von dem aus die Strecke AB unter maximalem Winkel

¢ erscheint. Wie lauten bei festem « die Bedingungen “

fiir das Verhéltnis A = a : b, die dariiber entscheiden, s A x
ob ¢ ein spitzer, rechter oder stumpfer Winkel ist?

Aufgabe 42: Maximumproblem

Man suche unter allen Dreiecken mit gegebener fester Sei-
te ¢ und gegeniiberliegendem Winkel + dasjenige mit dem
grofiten Flacheninhalt!

Fehlerrechnung

Aufgabe 43: Bestimmung der dritten Dreiecksseite

Losen Sie die folgende Aufgabe im Rahmen der elementaren Fehlerrechnung, d.h. bei klei-
nem h wird fiir eine Differenz f(x + h) — f(z) ndherungsweise f’(x)Ah gesetzt.

In einem Dreieck soll die Messung der Seiten b und c¢ als genau angesehen werden, wéahrend
die Messung des eingeschlossenen Winkels o mit dem absoluten Fehler |da| behaftet ist.
Mit welchem absoluten und relativen Fehler kann daraus die dritte Dreiecksseite ¢ berechnet
werden? Rechnen Sie mit folgenden Zahlenwerten: b = 400 Meter, ¢ = 500 Meter, o = 60
Grad, |da| = 10 Bogensekunden (1 Bogensekunde = (1/3600) Grad).

IHospital

Aufgabe 44: Differenzenformel fiir 2. Ableitung

Es sei f : (a,b) — R zweimal differenzierbar in einem Punkt xo € (a,b). Zeigen Sie, dass

lim - (F(r0 + ) — 2f (n0) + f(z0 — )) = (o).




Aufgabe 45: Grenzwertberechnungen

Ermitteln Sie ob der Grenzwert existiert, und wenn er existiert, so berechnen Sie ihn.

1. lim

2. lim (coshz — sinhx).

T—00
: 1 1
3. zgg}i—o (sinac - 5)
4. 1 arctan x

T 250 arcsinz °
5. lim |sinz|®.
z—0

. In(In x)
6. il_}Hle sin(z—e) "

7. lim zsin(l/z).

r—r—+00

8. lim (e /% —1).

T—-+00

Aufgabe 46: Uneigentliche Integrale und Regel von de I’Hospital

Es sei f integrierbar auf [0,8] fiir alle b > 0,lim, o f(x) = A,(A € R), und a > —1.
Berechnen Sie

T—00

lim %! / f(t)t*at.
0

Aufgabe:

Fiir einen Wert x € (0,1) betrachte man den
auf den Kreisbogen eines Einheitkreises mit
Mittelpunkt in (1,0) dariiberliegenden Punkt
mit der Ordinate y. Die Lénge des zugehori-
gen Bogenstiickes vom Ursprung bis zu die-
sem Punkt sei b. Die Gerade durch die Punkte
(0,b) und (x,y) schneide die z-Achse im Punk-

te (a,0). Wie verhélt sich a, wenn x gegen 0 X X 1 .
strebt?




Bestimmung der Ableitung

Aufgabe 47: Bestimmung der Ableitungen

Ermitteln Sie die Definitionsbereiche und Ableitungen fiir die folgenden Funktionen.

L fi(z) = [z[*,  (a€R);

2. folz) =" ;

3. fs(x) = sin(e™) ;

4. fy(x) = arctan(z? + 1) ;

5. fs(z) = arcosh (1 + sinz)
Mittelwertsitze

Aufgabe 48: Anwendung des Mittelwertsatzes

Sei f: (0;1)7R differenzierbar und der Grenzwert A = lim,_,0+0 f’(z) existiere.

Zeigen Sie:

Dann existiert auch limg 040 f(z) := A. Ferner ist die durch f(0) := X auf [0; 1) fortgesetzte
Funktion in 0 rechtsseitig differenzierbar mit der Ableitung

f(z) — £(0)

/ T _ 1 /
f+<0) T ng}ro x—0 J;Eg}ﬁ-ﬂ f (l’)

Aufgabe 49: Anwendung des Satzes von Rolle

Zeigen Sie mit Hilfe des Satzes von Rolle: Die Gleichung
" +pr+q=0, (p;qg€R)

hat fiir gerades n € N hochstens zwei und fiir ungerades n € N hochstens drei reelle
Losungen z.

Ungleichungen aus Mittelwertsatz

Aufgabe 50: Bernoulli-Ungleichung

Es seien a € R, a # 0, a # 1, und > —1. Benutzen Sie den Mittelwertsatz um die
folgenden Ungleichungen zu zeigen:

(I+2)*<l+ar wenn 0<a<l1
(I1+z)*>1+ax wenn a<0 oder a>1.




Aufgabe 51: Verallgemeinerter Satz von Rolle 1

Beweisen Sie folgende verallgemeinerte Variante des Satzes von Rolle:
Es sei f: (a,b) — R eine n-mal differenzierbare Funktion und es seien a < xg < 21 < ... <
x,, < b Nullstellen von f. Dann existiert ein ¢ € (g, x,) mit £ (&) = 0.

Aufgabe 52: Verallgemeinerter Satz von Rolle 11

Beweisen Sie den folgenden verallgemeinerten Satz von Rolle:

Es sei n eine natiirliche Zahl und f eine auf einem abgeschlossenen Intervall [a, b] stetige
Funktion, die bei a n-mal und im Inneren des Intervalls (n 4 1)-mal differenzierbar ist;
weiterhin gelte:

fla) = f'(a) = f"(a) = ... = f™(a) = f(b) =0.
Dann gibt es im Intervall (a,b) eine Stelle ¢ mit f™*1(¢) =0 .

Aufgabe 53: Zwischenwertsatz von Darboux

Beweisen Sie den Zwischenwertsatz von Darboux: Ist f : [a,b] — R differenzierbar und
f(a) <m < f'(b), so existiert ein ¢ € (a,b) mit f'({) = m.
Hinweis: Betrachten Sie fiir ein hinreichend kleines, aber festes h > 0 die stetige Hilfsfunk-
tion ¢ mit

f(z+h) = f(z)

() = 3 fir « € [a,b—hl.

Taylorscher Lehrsatz

Aufgabe 54: Restgliedabschitzung

Verwenden Sie den Taylorschen Satz, um die Abschéitzung
2

x 1
log(1 — — —— fi <0.1
og(l+z)—z+ 7| < 5000 fir |z| <0

Zu zeigen.




Taylorentwicklung von eA4u/fgabeb5:~1/ z?

Es sei

1
e 22 firz#0
T) = .
/(@) {0 firz =0

Zeigen Sie, dass f € C®(R), und £ (0) = 0 fiir jedes n € N.
Hinweis: Zeigen Sie durch Induktion, dass fiir x # 0

f™ (@) = p, <1> ¢ 2

X

gilt, fiir gewisse Polynome p,,, (n € NU{0}).

Theorie

Aufgabe 56: Differentiation von Determinanten

Determinanten werden zeilen- oder spaltenweise differenziert.

Es sei A(z) = (aj(2));<;; < n eine (n x n)-Matrix, deren Eintrége stetige Funktionen
sind und D(xz) = det A(xz). Weiterhin seien fiir eine n-reihige Determinante D(z) und
1 < k < n die Determinaten Si(z) bzw. Zi(z) diejenigen Determinanten, die aus D(x)
dadurch entstehen, dass man die Funktionen in der kten Spalte bzw. Zeile durch Ihre
ersten Ableitungen ersetzt. Dann gilt:

D'(x) =) Sk(x) = Zi(x).
=1 k=1

Aufgabe 57: Quotientenregel

Beweisen Sie die Quotientenregel mit Hilfe der Entwicklungsformel

f(x+h) = f(x)+ f'(z)h + he(h)

fiir differenzierbare Funktionen!




Aufgabe 58: Ableitung mit Hilfe der Definition.

Es seien @ > 0 und

falz) = {]:v|“ sin (1) wenn 2 # 0

o wenn z =0
Zeigen Sie:
1. f, ist stetig in O fiir jedes a > 0, aber nicht fiir a = 0.
2. fq ist differenzierbar in 0 fir jedes a > 1, aber nicht fiir a € (0; 1].

3. fl ist stetig in O fiir @ > 2, aber nicht fiir a € (1;2]

4. Fir k € NJk > 1 ist fék_l) differenzierbar in 0 fir jedes a > k — 1, aber nicht fiir
a€ (k—2;k—1] und fék) ist stetig in O fiir a > k, aber nicht fir a € (k — 1; k]

6.1.2 Grenzwerte und Stetigkeit

Gleichméfiige Stetigkeit

Aufgabe 59: Gleichmaiafige Stetigkeit

1. Wann heifst eine Funktion f : R — R gleichméfig stetig?

2. Muss jede gleichmékig stetige Funktion f : R — R auch beschrankt sein, d.h.
gibt es dann eine Konstante C' € R mit |f(z)] < C fiir alle x € R (Beweis oder
Gegenbeispiel)?

3. Sei f: R — R gleichméfig stetig. Zeigen Sie, dass dann eine Konstante C' € R existiert
mit
lf(z)| < C(Jz|+1) firalle zeR.

4. Zeigen Sie, dass jedes reelle Polynom von mindestens zweitem Grad nicht gleichméfig
stetig auf ganz R ist.

Aufgabe 60: Stetigkeit der Wurzelfunktion

1. Beweisen Sie die folgende Ungleichung

a,b20:>‘\/5—\/5‘§\/|aib]§\/5+\/5 (W)

2. Zeigen Sie mit Hilfe von a), dass die Funktion f(x) = y/z im ihrem Definitionsbereich
stetig ist.

3. Ist f in ihrem Definitionsbereich gleichméfig stetig?




Aufgabe 61: Gleichmifiige Stetigkeit

Ist die Funktion f(z) := % gleichméfig stetig
1. auf dem Intervall (0, 1];
2. auf den Intervallen (a,1], (a € (0,1)) ?

Begriinden Sie Thre Antworten.

Aufgabe 62: Untersuchungen auf gleichmifiige Stetigkeit

Sind die folgenden Funktionen auf den angegebenen Intervallen gleichméfig stetig?

L. fi(z) =V1—22 2 €[0,1].
2. fao(z) =sin(1/x), x € [0, 1].
(x)
(x)

Singularitaten

Aufgabe 63: wesentliche Singularitit

Es werde im Intervall (0, 1) eine reelle Funktion f = f(z) durch die Vorschrift
f@)=nn+lz—n fir z€[l/(n+1),1/n), n=1,2,...

definiert. Existiert der Grenzwert lim,_, ¢ f(2) und welchen Wert hat er gegebenenfalls?

Stetigkeitsuntersuchungen

Aufgabe 64: Beschranktes Wachstum

Eine reelle Funktion f = f(z) sei fiir hinreichend grofe z € R definiert und in jedem
endlichen Intervall I C D({) gleichméfig beschrankt. Ferner gelte mit einem reellen ¢ > 1

i 40@%) = f(@)

Tr—+0c0o €T

=a€R.

Zeigen Sie, dass daraus folgt:




Aufgabe 65: Untersuche auf Stetigkeit

Untersuche die Funktion

firx ¢ Q

fiir x = % mit p, ¢, € N, sowie p, ¢ teilerfremd.

)=

Q= O

auf Stetigkeit

Aufgabe 66: Untersuche auf Stetigkeit

Die abzéhlbare Menge der rationalen Zahlen im Intervall I = [0, 1] werde als eine unendliche
Folge {r,}n>1 geschrieben. Mit der Bezeichnung

A(z) ={nneN,r, <z} fir zel

definieren wir die Funktion f : I — R durch
1
flx) = E on”

Beweisen Sie:
1. Die Funktion f ist auf I monoton wachsend.

2. Die Funktion f ist an den irrationalen Stellen in [ stetig und an den rationalen Stellen
in I unstetig.

Aufgabe 67: Stetigkeit der Betragsfunktion

Sei I ein offenes Intervall. Sind f und g auf I definiert, so setzen wir F(z) :=

max{f(z);g(z)}, (z € I).
1. Es sei f stetig auf I. Zeigen Sie, dass dann | f| ebenfalls stetig auf I ist.

2. Seien f und g stetig auf I. Zeigen Sie, dass dann auch F stetig auf [ ist.
Hinweis: Zeigen Sie zunéchst die Formel

Fla) = 5 (F(2) +g(x) + |(z) — g(o)]).




Aufgabe 68: Stetigkeit der Wurzelfunktion

1. Beweisen Sie die folgende Ungleichung

a,b20:>‘\/5—\/5‘§\/|aib]§\/5+\/5 (W)

2. Zeigen Sie mit Hilfe von a), dass die Funktion f(x) = \/x im ihrem Definitionsbereich
stetig ist.

3. Ist f in ihrem Definitionsbereich gleichméfig stetig?

Stetigkeit des Maximus und von |Aufgabe69 : f(z)|.

Seien f und g auf einem offenen Intervall I definiert, das einen Punkt zy enthélt. Ferner
seien f und g stetig in xg, und wir definieren

F(z) := max{f(z),g(z)}, (zel).
1. Man zeige, dass die Funktion F' stetig in xg ist.

2. Man benutze a), um zu zeigen, dass | f| stetig in xz ist.

unbestimmte Ausdriicke

Aufgabe 70: Binomischer Satz

Berechnen Sie die folgenden Grenzwerte:

n_ m
1L lim (1+max) ! (14 nx)
z—0 x
134 _ 17
o lim (2 +3)"(4z — 1)
az—+oo  (bx — 2014)20

, m,n € N.




Aufgabe 71: Unbestimmte Ausdriicke

Berechnen Sie fiir natiirliche Zahlen p1, p2, q1, g2 die Grenzwerte

1.
Pt —1
im ,
x—1zP2 — 1
2.
1
.oz —1
lim ,
3. ,
p1
.oxa —1
lim —;

Hinweis: Verallgemeinerte dritte binomische Formel

6.1.3 Integralrechnung

bestimmte Integrale

Anwendungen

Aufgabe 72: Eine Aufgabe mitten aus dem fréhlichen (Studenten-)Leben.

Eine gewisse Menge an Bier wird in einer stehenden kreiszylinderférmigen Tonne vom Ra-
dius r bzw. einem kreiskegelstumpfférmigen Behélter mit dem Radius r am Boden und
Radius R > r in der Héhe H > 0 gelagert. In die Béden wird jeweils ein Zapfhahn mit
dem gleichen Querschnitt eingeschlagen. Aus welchem Behélter ist die gleiche Menge Bier
bei gedffnetem Zapthahn schneller vollstédndig ausgelaufen? Hinweis: Benutzen Sie Torricel-
li’'s Ausflufgesetz (benannt nach dem Mathematiker und Physiker Evangelista Torricelli,
1608-1647), wonach die Ausflufigeschwindigkeit v einer idealen Fliissigkeit (Bier?) durch
eine nach unten gerichtete Offnung sich proportional zur Hohe h der Fliissigkeit verhélt,
genaver v = VGh, G Gravitationskonstante. Leiten Sie daraus eine Differentialgleichung

fiir die Fliissigkeitshohe h(t) zur Zeit ¢t in beiden Féllen ab und diskutieren Sie diese.




Aufgabe 73: Welches Gefaf} 1auft zuerst leer?
Eine Ubung zur Integration

Wir betrachten eine bis zum Rand mit Wasser gefiillte Halbkugel vom Radius r. Daneben
stehen ebenfalls bis zum Rand gefiillte Geféfie, und zwar

1. ein Zylinder vom Radius 7,
2. ein auf der Spitze stehender gerader Kreiskegel mit Offnungswinkel 90° und
3. ein ebensolcher Kreiskegel, der aber auf seiner Grundflache steht.

1. Wie hoch sind die beschriebenen Gefifie, wenn alle die gleiche Wassermenge
enthalten?

An den Gefifien werden Offnungen so angebracht, dass die Ausflussgeschwindigkeit® v des
Wassers nur noch von der Hohe y der Wassersiule abhéngt; in allen Geféfen sei also v = a,/y
mit ein und derselben Konstanten a.

2. In welcher Reihenfolge laufen die Gefafie leer?

“Die Ausflussgeschwindigkeit héingt i.a. von der Gréfe und Form der Offnung, von der Form des Ge-
fafes, von der Viskositéit der Fliissigkeit und von der Hohe y des Fliissigkeitsspiegels ab. Bis auf die letzte
Abhéngigkeit seien alle anderen durch Form und Grofe der Ausflussoffnung so beriicksichtigt, dass sie in
einer Konstanten a zusammengefasst werden kdnnen.

Aufgabe 74: Integralabschitzungen

Zeige
1 < /1 dx < T d /1 dx < 2
— ——————— < —, un —_— < .
2 Jo VA—22+23 6 0o V4—-3x+a2® 3

Aufgabe 75: Integrand mit Betriagen

Berechne

3
/ V02?2 = 3z + 2|dx.
0

Aufgabe 76: Rekursionsformel

Berechne

In:/ sin” z dz.
0

firn=20,1,2,....

Hinweis: Zeige zunéchst I,,10 = I, — %_HIWA_Q.




Aufgabe 77: Substitutionstrick

1. Berechnen Sie durch die Substitution z = m — y das Integral
Il:/” rsinx do.
o l+cos?z
2. Versuchen Sie die gleiche Substitution bei dem Integral
IQ = /7r 71; CO.S';; dx
o 1l+sin“x

3. Berechnen Sie das Integral in I; durch partielle Integration.

4. Berechnen Sie das Integral in I anders.

Cauchy-Integral

Aufgabe 78: Cauchy-Integrierbarkeit monotoner Funktionen

Es sei f(z) = 1 + k—il in (ﬁ,ﬂ, (k € N), und f(0) = 0. Zeigen Sie, dass f auf [0,1]

monoton wachsend ist. Approximieren Sie f durch Treppenfunktionen, um das Integral von
f tber [0, 1] zu berechnen.

einfache Berechnungen

Rotationsflachen

Aufgabe 79: Oberfliche von Rotationskérpern

Berechne den Inhalt der Oberfliiche des durch Rotation der Kurve y(z) =1 — 2?2, |z| < 1
um die z-Achse entstehenden Rotationskorpers.

Aufgabe 80: Oberfliche der Kugel

Berechne den Inhalt der Oberfliche des durch Rotation der Kurve (x,v R? — 22), |z| < R
um die z-Achse entstehenden Rotationskorpers.

Aufgabe 81: Oberfliche Eines Rotationellipsoides

Berechne den Inhalt der Oberflache eines Rotationsellipsoides

d. h. des durch Rotation der Kurve (x, 2v/c¢? — 22), |z| < ¢ um die z-Achse entstehenden
Rotationskorpers.




Rotationskorper

Aufgabe 82: Hoéhe eines Rotationsellpsoides bei gegebenem Volumen

Das Innere eines Glases soll die Form eines Rotationsparaboloids z = z2 4 y? haben.
Berechne die Hohe h (des Inneren), die es haben muss, wenn es 0,5 Liter fassen soll, mittels

1. Volumenberechnung durch Integration im R?,

2. Guldinscher Regel.

Aufgabe 83: Ringe als Rotationskérper

M :={(z,y) eR*: 1 <a <5,

1
1§y§1+2\/6$x25} v s

Man berechne das Volumen des Korpers K, der bei

C={(x,y) €R2:9y% —2(3 -~ 2) = 0,0 <& < 3}

begrenzten Fliche um die y-Achse entsteht.

e ™
Rotation des Gebietes M um die xz-Achse bzw. um : ‘ ‘
die y-Achse entsteht. , ) . . . . .
Aufgabe 84: Eine Aufgabe - 3 Losungen I
N N
iy : . 04l / .
Man berechne das Volumen des Korpers, der bei Rotation der 1 1/ N
durch die Kurve . \W‘
0.5 1 15 g

Theorie

Aufgabe 85: ausgezeichnete Zerlegungsfolge

Man zeige, dafs die Vorschrift

"<

Zn:a:av(on)<ac1 <™ =1b

mit )
4 = (b/a)® > 1

eine ausgezeichnete Zerlegungsfolge des Intervalls [a, b] definiert!

xl(,”) =aq,; v=01,..,n,




Aufgabe 86: Konvexe Hiille

Bekanntlicherweise nennt man eine Menge K C C (C komplexe Ebene) konver, wenn sie
mit je zwei Punkten 21, zo € K auch die Verbindungsstrecke [21, z2] = {z = Az1 + (1 —=X)22 :
0 < X < 1} der beiden Punkte enthélt. Ist £ C C eine beliebige Menge, dann heift

conv E = N{K : K (C C) konvex, K D E}
ihre konvexe Hiille. Offenbar ist conv E die kleinste konvexe Menge, die F umfaft. Man

zeige:
n n
conv E = {Z)\lzz P > O,Z)\i =1,z € E,n € N} .

i=1 i=1
Die in der Klammer beschriebenen Linearkombinationen ) A;z; heifen Konvexkombinatio-
nen der Punkte z1, ..., z,.

Aufgabe 87: Nicht Riemann-integrierbare Funktion, die Stammfunktion besitzt.

1. Zeigen Sie: Die Funktion F' : [0,1] — R mit

\/Esin(l) fir0<z<1
F(z) '_{ 0 firz=0

ist fiir alle x € [0, 1] differenzierbar.

2. Berechnen Sie die Ableitung f := F’ und zeigen Sie, dass f nicht R-integrierbar ist.

Mit anderen Worten: Die Funktion f(z) hat zwar eine Stammfunktion, ist aber nicht
R-integrierbar.




Aufgabe 88: Vereinfachtes Konvergenzkriterium

Man beweise die folgende Modifikation der Konvergenzbedingung fiir Riemannsche Zwi-
schensummen:

(6.1) dlimo(Z,T)=A gdw. Ve >03Zy VT :|0(Zy,T)— A| <c¢;
die Zwischenpunktsysteme T sind natiirlich zu Zy zu bilden.

Verbal bedeutet die Aussage, dass es fiir den Nachweis der Existenz des Integrals geniigt,
nur eine einzige Zerlegung Zy zu finden, so dass fiir jede Wahl von Zwischenpunkten T' die
Abschétzung in (6.1) gilt.

Hinweis: Man beweise zunéchst folgenden Hilfsatz:

Fir Eq, ..., Ey C C folgt aus

(6.2) Vz, € E,: <e.

N
>
v=1

sogar

Yw, € conv E,, : < €.

N
>
v=1

Dabei ist

conv E = {Z)\izi A >0, A=1z EE,nEN}.

i=1 =1

die Menge aller Konvexkombinationen der Punkte zy, ..., 2.

uneigentliche Integrale

Aufgabe 89: Uneigentliches Integral

Existiert [j° (ﬁgfp dz?




Aufgabe 90: Existenz uneigentlicher Integrale

Bestimmen Sie, fiir welche positiven Zahlen p die folgenden uneigentlichen Integrale kon-
vergieren:

o0
1. 11:/ e TP dx
0

Aufgabe 91: Uneigentliche Integrale und Regel von de I’Hospital

Es sei f integrierbar auf [0,b] fir alle b > 0,lim; o f(z) = A,(A € R), und a > —1.
Berechnen Sie

lim %! / f(t)t*dt.
0

T—00

Aufgabe 92: Vergleichskriterien fiir uneigentliche Integrale

Es seien f und g integrierbar auf [a, b] fir jedes b mit b > a.
Beweisen Sie

(0.9}
1. Wenn |f(z)| < g(z) fir alle z > a und / g(z)dr < 400 gilt, so konvergiert
a

/ f(z) dx absolut.

oo
2. Wenn 0 < f(z) < g(z) fir alle z > a und / f(x)dr = 400 gilt, so ist auch
a

/aoo g(x) dx = +o0.




Aufgabe 93: Vergleichskriterien fiir uneigentliche Integrale

Aussagen:

b
/ f(x)dx absolut.
0

b
2. Ist f(x) > Maz7P fir x € (0;b], mit Zahlen p > 1 und M > 0, so ist / f(z)dzx
0
+infty.

Es seien b > 0 und f integrierbar auf [e,b] fiir alle € € (0;b). Beweisen Sie die folgenden

1. Ist |f(z)| < Mz™P fir x € (0;b], mit Zahlen p € (0;1) und M > 0, so konvergiert

Riemann-Stieltjes-Integral

Aufgabe 94: Existent des Riemann-Stieltes-Integrals bei Spriingen

Seien a, f1, fo : [0,2] — R und

() 1 firxz <1 fi(2) 3 firz<1 fo(z) 3 firxz<1
a(r) = , fi(z) = , fo(z) = .
2 firz>1 "' 4 firz>1" " 4 fire>1

Existieren die Riemann-Stieltjes-Integrale

2
/ fi(z)da fir i=1,27
0

unbestimmte Integrale

Partialbruchzerlegung

Aufgabe 95: einfache Nullstellen

x
/ 7x2—x—6dm'

Man bestimme




Aufgabe 96: Mehrfache komplexe Nullstellen

1. Zeigen Sie, dass im Falle mehrfacher komplexer Nullstellen der Ansatz

dz Az +B o dx
/<x2+62)"f BRI /W

1 2k -3

T ) e (o

mit

A
zum Erfolg fihrt (k = 2,3...).

Hinweis: Differenzieren, Multiplikation mit (z2 + 32)*  Koeffizientenvergleich.

2. Berechnen Sie mit dieser Methode

/ dx
(22 + 22 +5)%

Aufgabe 97: Mehrfache Nullstellen

Man bestimme

2x
/ (22 + D)(z — 1)2 dz.

Aufgabe 98: Quadratisch irreduzibler Nenner

Man bestimme

2x
/ ErnE oD@




Aufgabe 99: Partialbruchzerlegungen

323 + 52 — 251 — 1
1. I} = d
! / (x +2)(z—1)2 v
5 ] /3x3—x2—4x+13
. = X
2 x4 — 423 + 1322

1
3. I3 = d
3 /ew—i-l o

n 14:/ sin:lc—itcosacakC
3 + sin 2x
2
— 1
(22 +1)Va2+1

Partielle Integration

Aufgabe 100: Rekursion fiir [ 2" sinz dz

Beweisen Sie die Beziehung

— n oo — - | n n—k . . E
S(n) : /:U sinz dz kzok:( PR cos(w+k2)+c,

und stellen Sie eine analoge Formel fiir C(n) = [ 2™ cosz dz auf!

Stammfunktionen

Aufgabe 101: Bestimmung von Stammfunktionen

Man berechne die Stammfunktionen zu

1. /:c2 Inzdz,

2. [ z In(z?)dz,

e® sinx dx,

b

—_— — —

z(az® 4+ b)* dz, (a > 0,b> 0,k € R).




Substitution

Aufgabe 102: Integration rationaler Ausdriicke in sinx und cosz

1. Es bezeichne R = R(u,v) eine beliebige rationale Funktion von zwei Variablen u, v.
Zeigen Sie, dass sich Integrale vom Typ

/ R(sinz, cosx) dz

durch die Substitution ¢ = tan(z/2) auf die Berechnung von unbestimmten Integralen
iber rationale Funktionen zuriickfithren lassen.

2. Berechnen Sie mit dieser Methode die Integrale

. dzx . 1-+sinx
i) _— ii) ——dx
sinx + cosx 1 —cosx

6.1.4 Spezielle Funktionen

Aufgabe 103: Identititen

Beweisen Sie die folgenden Gleichungen :
1. arcosh = In(z + V22 — 1), (z € [1,+00)).
2. sin(arccosz) = V1 — 22, (z € [-1,+1]).
3. log, x + log, y = log,(zy), (a € R, a # 1, x,y > 0).

6.2 mehrerer Variabler

6.2.1 Differentialrechnung
partielle Ableitungen

Anwendungen

Aufgabe 104: Parameterintegrale

Berechne die Ableitung der Funktion

g(t) = /\/{ In(tx) dx

direkt und mit der Formel fiir Parameterintegrale.




Existenz und Berechnung

Aufgabe 105: Partielle Ableitungen

Berechnen Sie die partiellen Ableitungen %, % der Funktion f = f(z,y) mit den

Funktionswerten .
f(:c,y) — eSinT ecos(ery) fiir (CU,y) c ]R2.

Aufgabe 106: Totale Ableitung I

Untersuchen Sie die Funktion

flz,y) = {;\’ x? +y?  fiir (z,y) # (0,0)

fir (x,y) = (0,0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)!

Aufgabe 107: Totale Ableitung II

Untersuchen Sie die Funktion

k.1 fir (x, 0,0
0 fir (x,y) =(0,0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)!

Aufgabe 108: Totale Ableitung III

Untersuchen Sie die Funktion

224q2)3/2 .
7 0 fir (z,y) =(0,0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)!

Aufgabe 109: Totale Ableitung IV

Untersuchen Sie die Funktion

(22 + y?) sin (ﬁ) fir (x,y) # (0,0)

f(z,y) = {0 fir (z,y) =(0,0)

auf Stetigkeit, partielle (stetige) und totale Differenzierbarkeit in (0, 0)auf Stetigkeit, par-
tielle (stetige) und totale Differenzierbarkeit in (0, 0)!




Aufgabe 110: Totale Ableitung und Richtungsableitung

Sei f(0,0) = 0 und
3

f($7y) = fiir (ZL‘,y) G (070)'

z2 +y?
1. Zeigen Sie, dass f; und f, iiberall existieren und beschrankt auf R? sind.

2. Zeigen Sie, dass die Richtungsableitungen %(0,0), (u = (u1,u2) € R?, ||u|| = 1),
existieren, und dass ihr Absolutwert nicht gréfser als 1 ist.

3. * Zeigen Sie, dass andererseits f nicht differenzierbar in (0,0) ist.

Taylorentwicklung

Aufgabe 111: Taylorentwicklung von f(z,y,z) = sin(z + y) cos(zy) cosh z.

1. Berechne das Taylorpolynom T5(z,y,z) zweiter Ordnung fir f(z,y,z) = sin(z +
y) cos(xy) cosh z im Punkt (xo,yo, 2z0) = (0,0,0).

2. Bestimme ein r > 0 so, dass |f(z,y, 2) — To(z,y, 2)| < 107° fiir ||(z,y,2)| ., < 107"
ist.

Aufgabe 112: Taylorentwicklung von xY.

Berechne das Taylorpolynom fiir f(x,y) = z¥ im Punkt (x0,y0) = (1, 1) einschlieflich der
quadratischen Glieder.







Kapitel 7

Induktion

Aufgabe 113: Abschéitzungen von n!

Zeigen Sie fir n € N, n > 2

n\mn” n\mn”
1. (f) | <2 (7)
3 3 <n!< 5

n
2. ¢ (E> < n!
e

n+1\"
3. n!
n<< 2)

Aufgabe 114: Abzahlbarkeit von Teilmengen von N

Sei M eine Menge und f: M — N, g: M — N gegeben, so dass f surjektiv und g injektiv
ist. Man konstruiere (mit vollstdndiger Induktion) eine bijektive Abbildung h : M +— N.
Hinweis: Zeige

1. g(M) ist unbeschréankt

2. fiir eine unbeschriankte Menge A C N gibt es eine Bijektion b : A — N.
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Aufgabe 115: allgemeine Binomialkoeffizienten

Fiir dien gew6hnlichen Binomialkoeffizienten ( ZL ) erhdlt man fiir m,n € N durch Kiirzen

mit (m — n)! auch

n!(m —n)! n!

<m) ml m(m—1)...(m—n+1)

n

In dieser Form muss nun m nicht mehr notwendig eine natiirliche Zahl sein.
Dementsprechend kann man fiir @ € R,n € N einen ,yverallgemeinerten Binomialkoeffizi-

enten definieren durch
a) 1 fallsmn =0
n ) | ezl ‘7'1',(0‘_”+1) falls n > 0

Man zeige:
Fiir alle n € N und beliebige a, 8 € R gilt

Aufgabe 116: Summe iiber Cosinusfunktionen

Man beweise fiir n € N die folgende Formel:

n sin2”2+1:z: 1
E coskr = ———— — =.

251n§ 2
k=1

Aufgabe 117: Existenz und Berechnung der n-ten Wurzel

Seiz,yeR, 0<z,0<y<1, y<zundpe N\{0}.
Die Abbildungen fi, f— : N+ R seien wie folgt definiert

f-(0)=y, f-(n+1)=[f-(n)+h(f-(n), [r(n)=[f-(n)+g(f-(n)),
wobei fiir z > 0
Zeige

und beweise damit

sup f_(N) = inf{sup{ f1-(m) |m > k} | k € N} = ¢/&




Aufgabe 118: Indexverschiebung

Beweisen Sie durch vollstdndige Induktion

2 (5)-

k=0

Aufgabe 119: Zeige:

Jede nichtleere Teilmenge der natiirlichen Zahlen N besitzt ein kleinstes Element.

Aufgabe 120: Summe iiber Sinusfunktionen

Man beweise fiir n € N die folgende Formel:

o sin”THx . nT
E sinkr = ——=—sin —

sin 5 2
k=1

Aufgabe 121: Summenformel fiir Binomialkoeffizienten

Man beweise fiir a € R mit vollstdndiger Induktion:

z”:(a%k—k>:<a—l—z+l>.

k=0

Aufgabe 122: Verallgemeinerte Bernoulli-Ungleichung

Beweisen Sie mittels vollstdndiger Induktion die folgende Ungleichung

=1 =1
fiir beliebige reelle Zahlen a1, ..., a, mit a; > —1 und a;a; > 0 fiir 4,5 =1,...,n.
Welchen Ungleichungstyp erhélt man im Spezialfall a; = as = ... = a,?

Aufgabe 123: Schritt von n auf n + 2

Beweisen Sie durch vollstdandige Induktion, dass die Gleichung
(7.1) 2y ="

fiir jede fest gewihlte natiirliche Zahl n unendlich viele Losungen (x,, z) € N® besitzt.







Kapitel 8

reelle Zahlen

8.1 p-adische Zahlen

Aufgabe 124: a-Briiche

Einem gegebenen a-Bruch (z122...2p,2p41...)q wird die Intervallschachtelung I, =
[an,bp], n=1,2,... mit

n
(*) an = E a7 by = an 4+ a®
i=1

zugeordnet.

1. Bestimmen Sie fiir den Dualbruch (1010, 101010...)s diese Intervallschachtelung und
die eindeutig bestimmte reelle Zahl, die allen diesen Intervallen angehort.

2. Zu jeder reellen Zahl x > 0 existiert ein a-Bruch, so dass z € [ay,b,), n € N mit
an, by, entsprechend (*) gilt. Zeigen Sie, dass fiir die Ziffern z,, dann auch die folgende

Beziehung gilt:
2y = ann_hJ —a {xa"_h_lJ )

(Hierbei bezeichnet |y| den ganzen Anteil einer reellen Zahl y.)

3. Bestimmen Sie die (periodischen) a-Bruchentwicklungen der Zahlen z = 1/(a — 1)?
fir a = 3,4,5,6,7. Welche Vermutung ergibt sich fiir den Fall eines beliebigen a €
N, a > 27 Versuchen Sie, Ihre Vermutung zu beweisen.

Aufgabe 125: Abzahlbarkeit von Teilmengen von N

Beweisen Sie: Die Menger aller endlichen Teilmengen von N ist abzéhlbar. Gilt das auch
fiir die Menge aller Teilmengen von N?
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Kapitel 9

Unendliche Reihen

9.1 Fourierreihen

Aufgabe 126: Entwicklung

Entwickle

T in (g, 2%)

in eine Fourierreihe nach den Funktionen cos nx,sin nx. Skiziere den Verlauf der ersten
Partialsummen.

; s 2 9
u(m):{o in (0, %)U(5,2m)

9.2 geometrische Reihen

Aufgabe 127: Fibonacci-Koeffizienten

Entwickeln Sie die Funktion f = f(z) mit

1
an der Stelle zg = 0 in eine Potenzreihe )7 ; an2™. Zeigen Sie die rekursive Bildungsvor-
schrift
ap=a1=1, ap =ap_1+an_ fiirn>2

(Fibonacci-Zahlen) und geben Sie die Koeffzienten a,, explizit an. Welchen Konvergenzra-
dius hat diese Potenzreihe?

Hinweis: Bestimmen Sie die Nullstellen 27, ze des Nenners von f, schreiben Sie f in der
Form

a b
zZ— 21 zZ — 29

f(z) =

mit geeigneten Zahlen a, b und benutzen Sie die Summenformel fiir die geometrische Reihe.
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Aufgabe 128: komplexe geometrische Reihe

Es sei z € C mit Re 22 > —%. Zeigen Sie die Konvergenz der Reihe

2\n—1
n=1 (1 Tz )n

und bestimmen Sie deren Summe.

Aufgabe 129: Potenzen der geometrischen Reihe

Man beweise unter Verwendung der Cauchyschen Produktreihe mit vollstandiger Induktion
iiber I:

1 _Oo n+l—1 n_oo n+l—1 n
\z\<1:—(1_z)l—n§::0< 11 )z-Z( n )z

n=0

Aufgabe 130: Volumen und Umfang der Koch-Schneeflocke

Ersetzt man in einem gleichseitigen Dreieck der Seitenléinge 1 die Kanten rekursiv geméf
der Vorschrift

, AN

enstehen nacheinander die folgenden Figuren:

A ¥ % % %k

Berechnen Sie Umfang und Flacheninhalt aller dieser Figuren. Was passiert, wenn dieser
Prozess unendlich oft fortgefiithrt wird?

9.3 Grofter Umordnungssatz

9.3.1 Cauchysche Produktreihe

Aufgabe 131: Potenzen der geometrischen Reihe

Man beweise unter Verwendung der Cauchyschen Produktreihe mit vollstdndiger Induktion
iiber I:

1 _Oo n+l—1 n_oo n+l—1 n
]z|<1=>—(1_z)l—zo< 11 )z-Z( n )z

n=0




Aufgabe 132: Ubungen zur Quadratwurzel

1. Beweisen Sie unter Verwendung der Cauchyschen Produktreihe fiir z € C, |z| < 1 die

Beziehung
1 — 1 ’
(20 )

2. Unter Verwendung von a) zeige man

V2 = ;g(-D”( _n > 507"

N[

Aufgabe 133: Endliche Zeilenreihen

Die Reihe ) 7 an sei absolut konvergent und fiir n = 0,1, ... werde gesetzt:

bn:2n+1(a0+2a1+...+2”an).

Zeigen Sie, dass auch Y ° ; by, absolut konvergiert und

oo oo
D an=)_ bn
n=1 n=1

gilt. Hinweis: Wenden Sie den Groften Umordnungssatz an!




Aufgabe 134: Die Lambert-Reihe

1. Beweisen Sie: Die Lambert®-Reihe

S(Z):Zliizn, zeC
n=1

konvergiert fiir |z| < 1 und divergiert fir 2| > 1.

2. Zeigen Sie die Identitdt

00 P e
Do =2 A
n=1 n=1

wobei d(n) die Anzahl der (echten und unechten) Teiler von n bezeichnet.
3. Fiir welche z € C konvergiert die rechte Reihe.
4. Beweisen Sie die Identitét

2
1 >, d(n
£3)-5%

n=1

?Johann Heinrich Lambert (* 26. August 1728 in Miilhausen (Elsass); t 25. September 1777 in Berlin)
war ein schweizerisch-elséssischer Mathematiker, Logiker, Physiker und Philosoph der Aufklarung, der u.
a. die Irrationalitdt der Zahl 7 bewies.

9.4 konkrete Reihen

Aufgabe 135: Binomische Reihe

Es sei a € R. Die Binomial-Koeffzienten sind durch

(9)m1 wma (0)—sleztlomnn oy

0 n!

und die binomische Reihe als

definiert. Zeigen Sie,
1. dass die Reihe fiir |z| < 1 konvergiert.
2. dass im Falle von @ = m € N die Reihe nur endlich viele Glieder hat und
Sm(z) =04+ 2)™

gilt.




Aufgabe 136: Definition und Berechnung von e.

Betrachte die rellen Folgen {a,} und {s,} mit

1 1
anp = (1+ 5)" und Sp = o
k=0
Definiere e := lim,, oo S, Warum ist dies wohldefiniert?
a) Zeige: an =Y ;_, < Z > n—lk und a, < s, f.a.n € N.
b) Folgere: {ay} konvergiert und lim, o ay, < e.
c) Zeige: Fiir alle m > n gilt
1.1 1 2 n—1_1
>1+1 1——)=+--- 1——)(1——)...(1— —.
am 2 1+ 1+( m)2!+ * m)( m) ( m >n!

d) Folgere lim,,,o a,, > sy, f.a. n € N und lim,, ;o0 ay, > €. Also lim,, o0 a, = €.

Diese Aufgabe zeigt lim,, oo an = lim, o S, = €, die sogenannte Eulersche Zahl.

Versuche die Zahl e jeweils mit a,, und s, zu approximieren. Wie grof mufs jeweils n € N
sein, um e mit fiinf Dezimalen genau zu berechnen?

Aufgabe 137: Die Lambert-Reihe

1. Beweisen Sie: Die Lambert-Reihe

konvergiert fiir |z| < 1 und divergiert fiir |z| > 1.

2. Zeigen Sie die Identitit

o0 o [%S)
DR P
n=1 n=1

wobei d(n) die Anzahl der (echten und unechten) Teiler von n bezeichnet.
3. Fiir welche z € C konvergiert die rechte Reihe.
4. Beweisen Sie die Identitét

n=1

?Johann Heinrich Lambert (* 26. August 1728 in Miilhausen (Elsass); { 25. September 1777 in Berlin)
war ein schweizerisch-elsissischer Mathematiker, Logiker, Physiker und Philosoph der Aufklarung, der u.
a. die Irrationalitét der Zahl m bewies.




Aufgabe 138: Teleskopreihen
1. Entscheiden Sie {iber Konvergenz und bestimmen Sie gegebenenfalls die Summen der
Reihen
- 1
s =3 L
= Vntvn—1
1 1 1
b = e
(b) S2i= gttt
o
3n?+3n+1
Ss 1= —_—.
CEEDY n3(n+ 1)3
n=1
2. Zeigen Sie
- N O S U
—(a+n)(a+b+n) “b\a a+1 T at+b-1)"
Welche Werte von a, b kénnen dabei zugelassen werden?

9.5 Leibniz-Reihen

Aufgabe 139: Binomialkoeffizienten

Zeigen Sie mit Hilfe des Kriteriums von Leibniz, dass die Reihe

> (1)

n=1

fiir jedes reelle a € (—1,0) konvergiert.

Aufgabe 140: Leibniz-Reihe

Untersuchen Sie auf Konvergenz bzw. Divergenz

> Ink
2::(—1)k7

k=1

Aufgabe 141: Monotonie erfoderlich

Untersuchen Sie die folgende Reihe auf Konvergenz / Divergenz !

o0

. 2
0" e

n=1




9.6 Potenzreihen

Aufgabe 142: Fast harmonische Reihen

Es sei {ap}n>0 eine monoton fallende Nullfolge. Man zeige:

Die Summe
o0
S = E anz"
n=0

konvergiert fiir alle z mit |z| < 1, mit Ausnahme von vielleicht z = 1!

Aufgabe 143: Identititssatz fiir Potenzreihen

o
1. Die Potenzreihe P(z) := Z anz" habe einen positiven Konvergenzradius p. In jedem

n=0
Punkt des Konvergenzkreises gelte P(z) = P(—z). Zeigen Sie, dass dann a,, = 0 fiir

alle ungeraden n gilt.

o
2. Gibt es Potenzreihen P(z Z a2z mit Konvergenzradius p > 1, die in den Punk-
k=1
ten z =1, 4 5 é, 7>+ - - der Reihe nach die Werte
,)1234 b ,,>111111
i) =, =,=,=,... bzw. i) =, =, -, -, =, =
2345 YWy rrres
annehmen?

9.6.1 Konvergenzradius

Aufgabe 144: fehlende Exponenten

Bestimmen Sie den Konvergenzradius der Potenzreihe

i :
2n+l
— 4N

Aufgabe 145: Formel von Hadamar

Bestimmen Sie das Konvergenzverhalten der Reihe:

[o¢]
g anxT"
n=0

mit den Koeffizienten a, = 3" (n gerade) und a, = 5" (n ungerade) in Abhéngigkeit von
der reellen Zahl z.




Aufgabe 146: Formel von Hadamar II

Bestimmen Sie das Konvergenzverhalten der Reihe:

(o)
E anx”
n=0

mit den Koeffizienten ag, = 3™ und ag,+1 = 5" in Abhéngigkeit von der reellen Zahl z.

Aufgabe 147: Konvergenzradiusbestimmung

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen in Potenzen von z:

=" = (n))? 2" [ n+a n
a);n!z,b)z(zn)!z,c)zﬁn,d)Z( " >z,(a6(C)

n=1 n=1 n=0

Aufgabe 148: Potenzfunktion vesus Exponentialfunktion

Bestimme den Konvergenzradius der Potenzreihe

o0

Z(nQOIQ + gn)zn

n=1

Aufgabe 149: Quotientenkriterium versus Wurzelkriterium

Bestimmen Sie den Konvergenzradius der Potenzreihe

i <1 (=) + i) (2 — 20)".

n=0
Untersuchen Sie die Reihe
1. zunéchst mit dem Quotientkriterium,
2. dann mit dem Wurzelkriterium und

3. benutzen Sie zuletzt die Formel fiir den Konvergenzradius.




Aufgabe 150: Satz von Cauchy-Hadamar

Es sei p > 0 der Konvergenzradius der Potenzreihe

oo
S = E an 2".
n=0

Welchen Konvergenzradius haben dann die Potenzreihen

Sy = Zann!z", Sy 1= Z—Tz”, S3 1= Zannmzn, Sy = Z—;z" (m e N)?
n=0 n=0 - n=0 n=0 n

9.7 Quotientenkriterium

Aufgabe 151: Konvergenzuntersuchung

Untersuchen Sie die folgenden drei Reihen auf Konvergenz oder Divergenz
n

. (n!)? L 2mpl =, 3l
DY o DS 9 Y T

n=1 n=1 n=1

9.8 Vergleichskriterium

Aufgabe 152: Reihen mit der Eulerschen Zahl

Untersuchen Sie die Konvergenz der folegnden Reihen

0 2 (-()) v B0

n=1 n=1

Hinweis: Vergleichskriterium

Aufgabe 153: gebrochen rationale Summanden

Es seien a, b beliebige positive (reelle) Zahlen. Fiir welche (rationalen) Werte von s,t kon-
vergiert die unendliche Reihe




9.9 weitere Summationsverfahren

Aufgabe 154: Partielle Summation

Manchmal kann man die sogenannte partielle Summation fiir Konvergenzuntersuchun-
gen von unendlichen Reihen benutzen: Sind aq,...,an, bi,...,b, € C und ist
m

Ay, = Z ag, m=1,....n, dann gilt
k=1

n n—1
> arby = Apby + > Aglbr, — bryr)-
k=1 k=1

1. Beweisen Sie diese Formel.

2. Zeigen Sie damit: Hat die reelle, unendliche Reihe > > | a, beschrénkte Partialsum-
men und ist die reelle Folge {b,}, N eine monotone Nullfolge, dann konvergiert die
Reihe Y707 | anby,.




Kapitel 10

Ungleichungen

10.1  Bernoulli-Ungleichung

Aufgabe 155: Bernoulli-Ungleichung

Es seien a € R, a # 0, a # 1, und x > —1. Benutzen Sie den Mittelwertsatz um die
folgenden Ungleichungen zu zeigen:

(I+2)*<l+ar wenn 0<a<l1
(I14+2)*>1+ax wenn a<0 oder a>1.

Aufgabe 156: Bernoulli-Ungleichung fiir rationale Exponenten

Beweisen Sie die folgenden beiden Varianten der Bernoullischen Ungleichung. Dazu sei
x > —1 eine reelle Zahl und «a eine rationale Zahl.

1. Esgilt (14+2)% > 1+ ax fir a > 1.

2. Esgilt (1+2)*<l4azrfir0<a<]l.

Hinweis: Benutzen Sie den Satz iiber das geometrische und das arithmetische Mittel.

10.2 Cauchy-Schwarzsche Ungleichung

Aufgabe 157: Disjunkte Kreise

Es seien x,y reelle Zahlen, fiir die
(x =52+ (@y—-"77°=4

gilt. Zeigen Sie:

2 + 4% > 36.
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Aufgabe 158: Gegebene Summe und Quadratsumme

Es sei

T +x9s+r3+24+25 = 10

x%+m%+a}§+mi+x§ = 25

Zeigen Sie, dass dann 0 < z; <4, i =1,...,5 gilt.
In welchen Fallen konnen dabei Gleichheitszeichen auftreten?

Aufgabe 159: Lagrangesche Identitét

Es sei n € N und z;,wr € C,k = 1,...,n. Beweisen Sie die sogenannte LAGRANGEsche
Identitat
n 2 n n
2 2 _ _ 9
YDRTAIES ISTH ST SRS
k=1 k=1 k=1 1<i<k<n

und daraus folgend die CAUCHY-SCHWARZsche Ungleichung fiir komplexe Zahlen

n 2 n n
D> awwn| <D Jal >l
k=1 k=1 k=1

10.3 Dreiecksungleichung

Aufgabe 160: Abschatzung zusammengesetzter Groéfsen

Es seien a,b € R, so dass |a+ 1] <1072 und [b— 5/ < 3-1072.

Schitze die Grofen |a + b — 4|, |ab® + 25|, |(b/a) + 5| und |av/b + v/5] ab.

Aufgabe 161: Abschitzung nach der Dreiecksungleichung

Es seien a,b € R gegeben mit |a — 3] <3-1073, [b+2|<2-1073.
Schétzen Sie die folgenden Ausdriicke ab:

a)la+b—1[, b)|ab+6|, c)|a’b+ 18

,d)‘z-f-g’, e)‘\/&—\/ﬁ‘.




Aufgabe 162: Stetigkeit der Wurzelfunktion

1. Beweisen Sie die folgende Ungleichung

a,b20:>‘\/5—\/5‘§\/|aib]§\/5+\/5 (W)

2. Zeigen Sie mit Hilfe von a), dass die Funktion f(x) = \/x im ihrem Definitionsbereich
stetig ist.

3. Ist f in ihrem Definitionsbereich gleichméfig stetig?

10.4 Mittelungleichung

Aufgabe 163: Zyklisches Produkt

Gegeben seinen n positive reelle Zahlen x1, ..., x,.
1. Sei y1, ..., yn eine beliebige Umordnung der Zahlen x4, ..., z,. Man beweise
e
S,
i Ik

2. Sei xpy1 := x1 gesetzt. Man beweise

n

n n
T x '
= Tk 1 \Zk+1




10.5 Rechnen mit Ungleichungen

Aufgabe 164: Losen von Ungleichungen

1. Bestimmen Sie alle reellen Zahlen = # 1, fiir die gilt:

x
z+1

x
r+1

' >
2. Bestimmen Sie alle reellen Zahlen z, fiir die gilt

llz+ 1] — |z +3|| < 1.

3. Es sei p > 0 eine gegebene reelle Zahl. Bestimmen Sie in Abhéngigkeit von p alle

reellen Zahlen z # 0 mit
2
TP o
p x

4. Es sei p eine gegebene reelle Zahl. Bestimmen Sie in Abhéngigkeit von p alle reellen
Zahlen x mit
pr (3—xz)>T7p—>5.

5. Bestimmen Sie alle reellen Zahlen z mit

1
x2f4x+3>§x+1.

Hinweis: Es ist lehrreich, sich mit Hilfe eines Zeichenprogramms (z.B. dem freien Gnuplot)
eine Vorstellung vom Verlauf der Graphen der jeweiligen Funktionen zu verschaffen!

10.6  Tschebyscheffsche Ungleichung

Aufgabe 165: Tschebyscheffsche Ungleichung

1. Zeigen Sie die folgende Identitat: Fir aq,as, ..., a, € R und by, bo, ..., b, € R gilt

Z ((li — ak)(bl — bk) =2 {nZakbk - (Z ak) <Z bk> }
k=1 k=1 k=1

ik=1

2. Leiten Sie aus a) die Tschebyscheffsche Ungleichung her: Ist a; > ag > ... > a, und
b1 > by > ... > by, so gilt

a1 +as+ ... +ap, b1—|—b2—|—+bn < aiby + asbs + ... + a,by,

n n n




10.7 weitere Abschitzungen

Abschitzung von 1/\/Aufgabel66 : n

1. Beweisen Sie fiir jede natiirliche Zahl n

2 (Va1 —\/ﬁ)<\}ﬁ<2(\/ﬁ— o).

2. Bestimmen Sie den grofiten ganzen Anteil |z] der Zahl

1000000 1 1 1

1 1
x = —==lt =t =ttt
; vk V2 V3 VA v/1000000

Hinweis: Fiir eine reelle Zahl x ist der grofite ganze Anteil die eindeutig bestimmte
ganze Zahl |x| =: m mit m < x < m + 1. Benutzen Sie die Ungleichung aus a).
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Kapitel 11

Ebene Probleme

Aufgabe 167: Disjunkte Kreise

Es seien x,y reelle Zahlen, fiir die
(z =572+ (y—T7)72=4

gilt. Zeigen Sie:

x? +y* > 36.
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Kapitel 12

Kegelschnitte

Aufgabe 168: Kegelhalbierung

Ein gerader Kreiskegel mit Grundkreis-
radius r und Hoéhe h wird durch einen
ebenen Schnitt im Winkel a zur Grund-
flache in zwei volumengleiche Teile geteilt.
(o sei dabei natiirlich echt kleiner als
der Mantelwinkel des Kegels, so dass als
Schnittfliche eine Ellipse entsteht, de-
ren Rand ganz auf dem Kegelmantel liegt.)

Wie groft ist die Schnittfliche und in wel-
cher Hohe schneidet die Schnittebene die
Kegelachse?
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Kapitel 13

Kugelberechnungen

Aufgabe 169: Kugel mit Loch

In eine Kugel vom Radius r wird ein zylin-
drisches Loch vom Radius a so gebohrt, dass
die Zylinderachse durch den Kugekmittelpunkt
geht. Die Hohe des Loches betragt 1 m.

Wie grofs ist das Volumen des Restkorpers?

7







Kapitel 14

Polyeder

Aufgabe 170: Ortsvektorsumme im reguliren Polyeder

Seien M der Mittelpunkt und P;,¢ = 1,...,n die Eckpunkte eines reguldren Polyeders.
Man zeige fiir alle n € N
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Teil IV

Funktionalanalysis
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Kapitel 15

Metrik und Norm

Aufgabe 171: Beschriankte Metrik

1. Es sei(M,d) einmetrischer Raum mit dem Abstand d : M x M — R
. Zeigen Sie, dass dann auch dy : M x M — R mit

_ d(=z,y)
dl(%y) = m

eine Metrik auf M ist.
(Man beachte, dasd stets di(z,y) < 1 ist.)

2. Erzeugt die Metrik d; die gleiche Topologie (d. h. das gleiche System der offenen und
abgeschlossenen Mengen) auf M wie d ?

Aufgabe 172: Franzosische Eisenbahn-Metrik (Alle Ziige fahren iiber Paris.)

Es sei d : R? x R? — R eine Metrik auf dem Raum R2.
Fiir z; = (z;,y;) € R?, i = 1,2 sei

CZ( ) d(z1,22) falls 1 y2 = 2211
21, 22) = )
b2 d(z1,0) +d(0, z2) sonst

Man gebe eine geometrische Deutung der Bedingung 1 y2 = z2y1 an und untersuche, ob
d ebenfalls eine Metrik auf dem Raum R? ist.
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Aufgabe 173: Matrixnorm

Im Vektorraum V' der reellen (n x n)-Matrizen A = (a;;) werde gesetzt:

[All == max |a;l.
1,7=1,...,n

1. Priifen Sie die Normeigenschaften von ||-|| nach!
2. Ist ||| eine multiplikative Matrixnorm auf V', d.h. gilt
[AB| < [[All - [ Bl

fiir beliebige Matrizen A, B aus V7 (Beweis oder Gegenbeispiel!)

3. Es sei M die Menge der invertierbaren unteren Dreiecksmatrizen aus V. Ist M eine
offene Menge im normierten Raum V|| - |7 Bestimmen Sie alle Randpunkte von M!

Normen im RAu/fgabel74:2

1. Untersuchen Sie, ob folgende Ausdriicke Normen im R? sind und beschreiben Sie
gegebenenfalls das Aussehen des Einheitskreises.

(a) [[(z1,z2)|| = |21 — 22| + |71]
(b) [[(z1,22)[| = 2|21 + 3|z2]
(¢) (w1, 22)]| = |21 — 22

2. Bestimmen Sie auch die zugehorigen Matrixnormen.

Aufgabe 175: reziproke Metrik in N

Auf der Menge der natiirlichen Zahlen werde gesetzt:

[n —m|

d(n,m) = fir n,m e N.

nm

1. Zeigen Sie, dass d eine Abstandsfunktion auf (N, d) ist.

2. Beschreiben Sie alle offenen, alle abgeschlossenen und alle kompakten Teilmengen von
(N, d).

3. Ist der metrische Raum (N, d) vollstdndig?




Teill V

Funktionentheorie
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Kapitel 16

(Gaulssche Integralformel

Aufgabe 176: Konjugierte Formel

- j{ _dz
Z — 20

|z[=1

Man berechne das Integral

iuber dem Einheitskreis!
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Kapitel 17

Gaulsscher Integralsatz

Aufgabe 177: Fresnelschen Integrale

Berechnen Sie unter Verwendung des reellen Integrals

/ o p— 1 / ety 12 gy — LA/2) VT
0 1/ 2 2

die sogenannten Fresnelschen Integrale

I, ::/ cos(t?)dt und I, ::/ sin(t?) dt,
0 0

indem Sie die in ganz C holomorphe Funktion f(z) = e~ iiber den Rand des Kreissektors

S:{ZE(CHz\<R;O<arg(z)<g}

integrieren, den Cauchyschen Integralsatz anwenden und schlieflich den Grenziibergang
R — oo vollziehen.
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Kapitel 18

komplexe Zahlen

18.1 Rechnen mit komplexen Zahlen

Aufgabe 178: Betrag und Argument

Berechnen Sie von den folgenden komplexen Zahlen jeweils den Betrag und (ein) Argument:

4
a) i216 p) ?4'21., o) (1+)" -1 =), (1-i)", neZ
— 2l

Aufgabe 179: Betrige u. a.

Berechnen Sie die folgenden Ausdriicke mit komplexen Zahlen:
1. ’222 — 321‘2,

2. ’2152 + 2’251‘,

3. Im <m>
23

wobei 21 = 1 — i, 2o = —2 + 4i und 23 = /3 — 2i ist. (Mit z wird die zu z konjugiert
komplexe Zahl bezeichnet, mit i die imaginére Einheit.)

Aufgabe 180: Geradengleichungen

Die folgenden drei Teilmengen Go, G+, G_ C C veranschauliche man sich in der Gauftschen
Zahlenebene, d. h. man tiberlege sich, welche geometrischen Objekte dadurch beschrieben
werden. Dazu seien a,b € C, b # 0 und

Gy = {zG(C\Im (Z;CL)—O},
Gy = {ZG(C|Im (Z;a>>0},
G_ = {ze@\lm <Z;a><0}.
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Aufgabe 181: Gleichungen und Ungleichungen

Finden Sie alle Zahlen z € C, die den folgenden Bedingungen geniigen

1. Re 23 =27,

[\)

24+ (2+i)z+14+i=0,

w

Clz—1+ |2 +2] <3,
4. Untersuchen Sie, fiir welche reellen Zahlen a > 1 die Gleichung
z+alz+14+i=0

komplexe Losungen besitzt und bestimmen Sie diese.

Aufgabe 182: Identitdten mit Betriagen

Beweisen Sie die folgenden drei Behauptungen:
1. Fir z € C gilt |z + 1] > |z — 1] genau dann, wenn Re z > 0 ist.
2. Fir z € C, z # 0 gilt Re (z + %) = 0 genau dann, wenn Re z = 0 ist.

3. Firz€ C, z#0gilt Im (2 + %) = 0 genau dann, wenn Im z = 0 oder |z| =1 ist.

Aufgabe 183: komplexe Wurzeln

Berechnen Sie die Quadratwurzeln aus 5 + 7i und v/2 (1 + 4).

Aufgabe 184: Polynome

1. Bestimmen Sie alle komplexen Losungen z der folgenden Gleichungen:
(-3 +64=0, 22—z+iz—i=0.
2. Es sei P = P(z) das folgende Polynom fiinften Grades:
P(z) = 25 + 2% — 223 + 222 + 42

Berechnen Sie P(1 + 1), P(2 + i) und zerlegen Sie P in Linearfaktoren!

Aufgabe 185: Unimodularitat

Es seien a, b komplexe Zahlen mit |a| # |b] und z eine unimodulare komplexe Zahl. Beweisen
Sie, dass dann bz 4+ a # 0 ist und die komplexe Zahl

w:= (az+b)/(bz + a)

wieder unimodular ist.




Aufgabe 186: Vereinfachung

Bestimmen Sie Real- und Imaginérteil der folgenden komplexen Zahl:

(1+4)* Q-9
(1—4)? '

_l’_







Kapitel 19

Mobiustransformationen

19.1 Spiegelung am Kreis

Aufgabe 187: Transformation auf Kreisringe

Wie sieht das Bild vom
M:={zeC|ll<|z+1i| <2}

unter der Abbildung f(z) = 1 aus?

Aufgabe 188: Transformation auf Kreisringe

1. Wie kann man durch eine Mobiustransformation das Gebiet zwischen zwei nichtkon-
zentrischen und durchschnittsleeren Kreislinien in der Gauftschen Zahlenebene auf ein
Gebiet zwischen zweil konzentrischen Kreislinien abbilden?

2. Existiert eine Mobiustransformation, die das Gebiet
G:={2€C]||z—1| > 1,|z] < 8} auf den Kreisring R ={2 € C|1 < |z]| < 2}
abbildet?

3. Geben Sie alle Mobiustransformationen an, bei denen der innere Randkreis des Bildes
von GG der Einheitskreis ist.

95






Kapitel 20

Residuensatz

20.1 Berechnung reeller Integrale

Aufgabe 189: Residuensatz

Berchnen Sie das Integral

o
/ cosac2 d
oo 1+

mit Hilfe eines komplexen Integrals.
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Teil VI

Gewohnliche Differentialgleichungen
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Kapitel 21

Einfithrende Ubungen

21.1 DGIls zu Kurvenscharen

Aufgabe 190: DGI zu zweiparametriger Parabelschar

Es sei folgende 2-parametrige Schar von Parabeln im R? gegeben:
{(x,y) cR?|y=a(zx—b)? abc R}.

Bestimmen Sie eine Differentialgleichung 2. Ordnung, welche diese Parabeln als Losungs-
kurven besitzen.

Aufgabe 191: Einparametrige Geradenschar

Es sei folgende 1-parametrige Geradenschar im R? gegeben:
{(z,y) eR* | y=2¢c(x —c)+ % ceR}.
e Wie viele Kurven der Schar gehen durch einen gegebenen Punkt (g, 1) € R? ?

e Geben Sie eine Differentialgleichung 1. Ordnung an, welche diese Geraden als Lo-
sungskurven besitzen.

21.2 Einfache Anfangswertprobleme

Aufgabe 192: Anfangs- und Randwertprobleme

e Bestimmen Sie die Losung des Anfangswertproblems:
2

y 3 (z) = sin 2z, (x€[0,1]), y (%) = 7;—2, y (%) =Ty (E> =1.

e Bestimmen Sie die Losung des Randwertproblems:

y'(2) = 2* (x € [0,1]), y(0) = y(1) = 0
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Aufgabe 193: Anfangswertproblem zu einer Differentialgleichung n-ter Ordnung

Es seien n € Nyzg € R und yo,y1,...,9n—1 € R gegeben. Bestimmen Sie die Losung des
Anfangswertproblems:

y™(z) = e, (x € R),y(x0) = yo, ¥ (x0) = y1,- - -, ¥ D (20) = yn_1.




Kapitel 22

erster Ordnung

22.1 Analytische Losungen

Aufgabe 194: Potenzreihenansatz

Fiir die Losung des Anfangswertproblems
y =2 +y°, y0)=1

bestimme man die ersten vier Glieder der Potenzreihenentwicklung. Man gebe auflerdem
eine Abschétzung fiir den Konvergenzradius an.

22.2 direkt losbare Typen

22.2.1  Ahnlichkeitsdifferentialgleichung

Aufgabe 195: Bahn einer Ente

Ein Fluss stromt im Streifen {(z,y) € R?

0 < z < 1} mit der Wassergeschwindigkeit
v = (0,v(x)). Zur Zeit t = 0 startet eine
Ente im Punkt (1,0) und schwimmt mit der
konstanten Relativgeschwindigkeit w immer
in Richtung auf ihren Zielpunkt (0, 0). ‘
Stellen Sie eine Differentialgleichung fiir die
Bahnkurve der Ente auf und diskutieren Sie w
die Losung fiir fiir konstante v und fiir den

Fall v(z) = 2z(x — 1).

Erreicht die Ente immer ihr Ziel?
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Aufgabe 196: Orthogonale Trajektorien

Man bestimme die orthogonalen Trajektorien zu der Kurven-
schar 22 + 4% = 2cx

P(xy)

Aufgabe 197: Parabolspiegel

Welche Form hat ein Spiegel, Mo x °
der von einem Punkt ausgehende
Strahlen parallelisiert?

Aufgabe 198: Rechte Seite ist Funktion eines Quotienten aus Linearausdriicken

1. Zeigen Sie, dass sich Differentialgleichungen der Form

b
= f <a1x + by + C1> mit D — dot (al bl>
as + bay + co az bo

im Falle D = 0 auf eine Differentialgleichung mit getrennten Variablen und im Falle
D # 0 auf eine Ahnlichkeits-Differentialgleichung bzw. eine Euler-homogene Differen-
tialgleichung zuriickfiihren lassen.

2. Bestimmen Sie die allgemeine Losung der Differentialgleichung

,_x+y+1_ex r+y+1
oz +2 x+2 '




22.2.2 Bernoullische Differentialgleichung

Aufgabe 199: Anfangswertprobleme fiir Bernoullische Differentialgleichungen

e Bestimme die allgemeine Losung der Bernoullischen Differentialgleichung
Y = —2y + y?e”.
e Lose zur Differentialgleichung aus a) die Anfangswertprobleme mit:
y(0) =0 bzw. y(0)=1 bzw. y(0)=-1

und bestimme jeweils das maximale Existenzintervall der Losung.

Aufgabe 200: Bernoullische Differentialgleichung

Eine Differentialgleichung der Form y' = fo(z)y“+ f1(x)y mit gegebenen Funktionen fy, f1 :
(a,b) > R und a € R\ {0, 1} heifst eine Bernoullische Differentialgleichung.

Durch die Transformation y(z) = 2%(z) lisst sich eine solche Differentialgleichung auf eine
lineare Differentialgleichung der Form

!/

2 =a(z) z + s(z)
fiir z zuriickfiihren.
1. Bestimmen Sie 8, a(z) und s(z) aus «, fo(z) und fi(x).

2. Losen Sie das Anfangswertproblem

1 2
y =—y*+ ~y, y() =3

“Fir « = 0 bzw. a = 1 ist die Gleichung bereits eine lineare inhomogene bzw. homogene Differential-
gleichung.




Aufgabe 201: Bernoullische Differentialgleichung

Es seien fy, f1 stetige reelle Funktionen in einem Intervall (a,b) und o € R. Dann heift die
Differentialgleichung

Y = folx)y® + fi(z)y

eine Bernoullische Differentialgleichung. Fiir & = 0 entsteht eine inhomogene lineare und fiir
a = 1 eine homogene lineare Differentialgleichung, die nach Rezept gelost werden kénnen.

1. Zeigen Sie, dass im Fall & # 1 und y > 0 durch die Substitution z = y'~® eine lineare
Differentialgleichung fiir z entsteht.

2. Beweisen Sie folgenden Satz: Sind fo, fi in (a,b) stetig und o € R\ {1}, dann besitzt
das Anfangswertproblem

y = fo(x)y* + fi(x)y, y(zo) =wo, o€ (a,;b), yo>0

eine eindeutig bestimmte Losung in einer Umgebung von xg. Ist a € Z \ {1}, dann
gilt das auch fiir yg < 0.

3. Bestimmen Sie die allgemeine Losung der Differentialgleichung

4y sinx = —y (1 + y4) +4° cos z.

22.2.3 Exakte Differentialgleichung

Aufgabe 202: Anfangswertproblem

e Teste die folgende Differentialgleichung auf Exaktheit

y? —x —ysinz 4 (2xy +cosz)y = 0.

e Lose das Anfangswertproblem zu a) mit y(r) =0 .

Aufgabe 203: Eulerscher Multiplikator m(x)

Bestimmen Sie fiir die Differentialgleichung

;o _y3 + 322y + 6zy
3(x? +y?)

einen nur von x abhingigen Eulerschen Multiplikator. Bestimmen Sie dann die Funktion
F = F(z,y), deren Niveaulinien mit den Losungskurven der Differentialgleichung iiberein-
stimmen. Fiir welche Werte (z0,yo) € R? ist das Anfangswertproblem mit den Anfangswer-
ten y(xo) = yo in einer Umgebung von z( eindeutig 1osbar?




Aufgabe 204: Eulerscher Multiplikator

Bestimmen Sie fiir die folgende Differentialgleichungeinen Fulerschen Multiplikator der
Form A = (2% + y?) und bestimmen Sie damit die allgemeine Losung von

(V+2°+2)y =y.

Aufgabe 205: Eulerscher Multiplikator m(z%y%)

Bestimmen Sie fiir die Differentialgleichung

J = Yy’ -y
2z + xy + 22

einen Eulerschen Multiplikator m durch einen Ansatz in der Form

m(z,y) = 2y’

mit geeigneten «, S. Losen Sie damit die Differentialgleichung.

Aufgabe 206: lieare Differentialgleichung als exakte Differentialgleichung l6sen

Bestimmen Sie einen Eulerschen Multiplikator fiir eine lineare Differentialgleichung

Y + f(x)y = g(x)

und 16sen Sie die zugehorige exakte Differentialgleichung.

22.2.4  Riccatische Differentialgleichung

Aufgabe 207: Riccatische Differentialgleichung

Beweisen Sie: Sind y = y;(x), ¢ = 1,...,4 vier verschiedene Losungen einer Riccatischen
Differentialgleichung

Y = fol@)y® + 2f1(@)y + fo(x),

im Intervall (a,b), dann ist ihr Doppelverhéltnis konstant, d. h. es gilt fiir alle z € (a, b):

yi(x) —ys(x)  yi(z) = ya(2)

12(@) —s(@) @) — (@)




Aufgabe 208: Riccatische Differentialgleichung

1. Zeigen Sie: Ist f : (a,b) — R stetig und z = z(z) eine Losung der Riccatischen
Differentialgleichung in Normalform 2’ = 22 — f(z), so ist y = y(z) genau dann
eine von z verschiedene Losung dieser Differentialgleichung, wenn u = 1/(y — z) der
linearen Differentialgleichung u’ + 2zu + 1 = 0 geniigt. Also: Kennt man von einer
Riccatischen Differentialgleichung eine spezielle Losung, dann kann man alle weiteren
Losungen durch elementare Integrationen bestimmen.

2. Bestimmen Sie auf dem in a) beschriebenen Wege die allgemeine Losung der Riccati-
schen Differentialgleichung

Aufgabe 209: Riccatische Differentialgleichung

Losen Sie die Riccatische Differentialgleichung

33—z
42 7

y=—(e+1)y’ —y+

Hinweis: Versuchen Sie zundchst mit dem Ansatz ys(z) = ax® eine spezielle Losung der
Differentialgleichung zu finden

Aufgabe 210: Riccatische Differentialgleichung

Eine Differentialgleichung der Form
y' = a(@)y + b(x)y* + s(x),

von der eine spezielle Losung ys(x) bekannt ist, lasst sich durch die Transformation y(z) =
z(x) 4+ ys(z) auf eine Bernouliische Differentialgleichung der Form

2 =p(x)z + q(2)2”

zuriickfiihren.
1. Bestimmen Sie p(z) und ¢(z) in Abhégingkeit von a/z),b(x), s(z) und ys(zx).

2. Bestimmen Sie eine spezielle Losung der Riccatischen Differentialgleichung

1 3
/I 2 - 2 = 2
Yy = <x\/§+$>y+xy +2f+x

mit dem Ansatz ys(z) = az®.
3. Transformieren Sie die Riccatische in ein Bernoullische Differentialgleichung.

4. Geben Sie die allgemeine Losung der Riccatischen Differentialgleichung an.




Aufgabe 211: Riccatische Differentialgleichung

Beweisen Sie: Ist die Funktion y = y(z) im Intervall (a,b) eine Losung der Riccatischen
Differentialgleichung

y' = fol@)y® +2f1(z)y + fo(x),

so ist die Funktion u = u(x) mit

€T
u(z) = exp (—/ fo(t)y(t) dt) , x,x0 € (a,b)
To
eine Losung der linearen homogenen Differentialgleichung zweiter Ordnung

folx)u" = (fo(x) + 2fo(z) fi(2)) W + f§ (z) f2(2)u = 0.

Ist umgekehrt u = wu(x) eine nicht verschwindende Losung dieser Differentialgleichung,
dann ist 2 = —u//(fo(x)u) eine Losung der Riccatischen Differentialgleichung. (fo sei in
(a,b) stetig differenzierbar mit fy(z) # 0, x € (a,b).

Aufgabe 212: Riccatische Differentialgleichung

Eine Differentialgleichung der Form

Y = fo(@)y* + fi(z)y + fo(w)

mit gegebenen Funktionen fy, fi1, f2 : (a,b) = R, fo(z) # 0 heilt eine Riccatische Differen-
tialgleichung.

1. Es seien fy zweimal stetig differenzierbar, f; einmal stetig differenzierbar und fo
stetig. Bestimmen Sie Funktionen g = ¢g(z) und f = f(x), so dass die Transformation
z = foy + g die Riccatische Differentialgleichung in die Normalform 2’ = 22 — f(x)
iiberfiihrt.

2. Berechnen Sie die Normalform der Riccatischen Differentialgleichung
Yy =y*— 2z + Dy + (1 + 2z +22).

3. Geben Sie die allgemeine Losung der urspriiglichen Riccatischen Differentialgleichung
an.




22.2.5 Trennung der Variablen

Aufgabe 213: Eine Aufgabe mitten aus dem fréhlichen (Studenten-)Leben.

Eine gewisse Menge an Bier wird in einer stehenden kreiszylinderférmigen Tonne vom Ra-
dius r bzw. einem kreiskegelstumpfférmigen Behélter mit dem Radius r am Boden und
Radius R > r in der Héhe H > 0 gelagert. In die Béden wird jeweils ein Zapfhahn mit
dem gleichen Querschnitt eingeschlagen. Aus welchem Behélter ist die gleiche Menge Bier
bei gedffnetem Zapfhahn schneller vollstandig ausgelaufen? Hinweis: Benutzen Sie Torricel-
li’'s Ausflukgesetz (benannt nach dem Mathematiker und Physiker Evangelista Torricelli,
1608-1647), wonach die Ausfluftgeschwindigkeit v einer idealen Fliissigkeit (Bier?) durch
eine nach unten gerichtete Offnung sich proportional zur Hohe h der Fliissigkeit verhélt,
genauer v = /Gh,G Gravitationskonstante. Leiten Sie daraus eine Differentialgleichung
fiir die Fliissigkeitshohe h(t) zur Zeit ¢ in beiden Féllen ab und diskutieren Sie diese.

T

Aufgabe 214: Die Kettenlinie

Leiten Sie die Differentialgleichung der
Kettenlinie her, bestimmen Sie deren
Losungen und diskutieren Sie dabei
die verschiedenen Fille!

Aufgabe 215: Nicht eindeutige Losung des AWP

Das Anfangswertproblem

Y=y in [0,00), ¥(0)=0

besitzt die triviale Losung y = 0. Existiert zu jedem A > 0 auch eine Losung dieses An-
fangswertproblems mit

y(x) =0 fir xz€[0,\] und y(x)>0 fir z€ (A o0)?




Aufgabe 216: Rechte Seite ist Funktion eines lienaren Ausdrucks

1. Zeigen Sie, dass sich Differentialgleichungen der Form
y' = flaz +by +c)

durch die Ersetzung z(z) = ax+by(x)+c auf eine Differentialgleichung mit getrennten
Variablen zuriickfithren lésst.

2. Berechnen Sie die allgemeine Losung der Differentialgleichung

2
x—2y+5

/

y =1

Aufgabe 217: Differentialgleichung der Traktrix

Bestimmen Sie die differenzierbaren Kurven y = y(z), y(z) > 0, deren Tangenten
zwischen dem Beriihrungspunkt mit der Kurve und dem Schnittpunkt mit der -
Achse eine konstante Linge a > 0 haben. Eine solche Kurve heifst auch Ziehkurve
oder Traktriz und entsteht, wenn man bei geradliniger Bewegung auf der z-Achse einen
Gegenstand hinter sich herzieht, der zu Beginn der Bewegung nicht auf der Ziehgeraden lag.

Diese Aufgabe soll von G.W. Leibniz (1646 - 1716) stammen, der die Bewegung seiner im
Punkte (0, a) liegenden silbernen Taschenuhr verfolgte, als er das am andere, im Koordina-
tenursprung befindliche Ende der Uhrkette entlang der x-Achse verschob.

22.3 implizite Dgl

22.3.1 Auflésung nach x moglich

Aufgabe 218: Auflésung nach x moglich

Losen Sie fiir die implizite Differentialgleichung
W) +y —z=0

das Anfangswertproblem y(1) = 1 und skizieren Sie die Losung.

22.3.2 Auflésung nach y moglich

Aufgabe 219: Auflésung nach y méglich

Losen Sie fiir die implizite Differentialgleichung
Yy = 22V + Yy

das Anfangswertproblem y(1) = 1 und skizieren Sie die Losung.




22.3.3 Clairautsche DGL

Aufgabe 220: Theorie der Clairautschen Differentialgleichungen.

Eine reelle Funktion g = g(t) sei fiir ¢ € [a, b] zweimal stetig differenzierbar mit ¢”(t) # 0.
Durch y = xt + g(t),t € [a,b] wird eine Schar von Geraden im R? gegeben.

1. Zeigen Sie: Es gibt eine ebene Kurve, deren Tangenten Geraden aus dieser Schar sind;
man nennt die Kurve deshalb auch Einhiillende der Geradenschar.

2. Die Differentialgleichung y = vy’ + g(y’) heift eine Clairautsche Differentialgleichung.

Zeigen Sie: Die Geradenschar und die Kurve von a) sind Losungen dieser Differenti-
algleichung.

Aufgabe 221: Ein Beispiel zur Clairautschen Differentialgleichung

Man 16se die Clairautsche Differentialgleichung

(22.1) y=zy —/1+ (y)?!

Aufgabe 222: Clairautsche Differentialgleichung

Geben Sie alle Losungen der Clairautschen Differentialgleichung
2
y=zy +(y)

all.

22.3.4 Lagrangesche DGL

Aufgabe 223: Lagrangesche Differentialgleichung

Bestimmen Sie alle Losungen der Differentialgleichung

(22.2) y=2zy — 1+ (¥)?

Aufgabe 224: Ein Beispiel zur Lagrangeschen Differentialgleichung

Man 16se die Lagrangesche Differentialgleichung

(22.3) y=2xy —Iny !




22.4 Lineare Differentialgleichung

Aufgabe 225: Ein Anfangswertproblem

Losen Sie das folgende Anfangswertproblem fiir eine lineare Differentialgleichung:

r_ )
1+ 22

y +2zx—1; y(0)=1.

Aufgabe 226: Die Differentialgleichung des Stromkreises

Die lineare Differentialgleichung fiir die Stromstérke I = I(t) in einem Stromkreis bestehend
aus einem Ohmschen Widerstand R und einer Induktivitat L lautet:

dl R U(t)

— —I(t) = —.

F O+ It =—
Dabei ist U = U(t) die angelegte Spannung.

1. Losen Sie das Anfangswertproblem mit der Wechselspannung U(t) = Asin(wt) und
I(0) = 0.

2. Zeigen Sie, dass die Stromstéarke fiir t — 400 wieder eine Sinusschwingung gleicher
Frequenz, aber mit einer Phasenverschiebung ist und berechnen Sie diese Phasenver-
schiebung!

Leben eines Aufgabe 227: Kifers auf dem Gummiband

Losen Sie die folgende Aufgabe aus dem Leben eines Kdfers auf dem Gummiband. Gegeben
sei ein beliebig dehnbares Gummiband auf der z-Achse. Ein Ende des Gummibandes werde
bei x = 0 festgehalten. Das freie Ende entfernt sich mit der konstanten Geschwindigkeit vy
vom festen Ende. Zur Zeit ¢ = 0 habe das Band die Linge L > 0 und zu dieser Zeit beginnt
ein Kéfer bei z = 0 mit der konstanten Geschwindigkeit vy relativ zum Band auf diesem
entlang zu kriechen. Errreicht er immer das andere Ende und wenn ja, nach welcher Zeit?




Aufgabe 228: Leitkurve

Die Gleichung
v+ f(@)y =g(2)

ist eine lineare Differentialgleichung 1. Ordnung. Dabei seien die Funktionen f, g stetig fiir
x € (a,b) und f(z) #0.

Zeigen Sie: Die Geraden mit den Richtungen, welche das Richtungsfeld dieser Differential-
gleichung den Punkten einer Geraden = = g,z € (a,b) zuordnet, verlaufen durch einen
Punkt P(zo) € R?! Die Punkte P(z0),z¢ € (a,b) liegen auf der sogenannten Leitkurve.
Bestimmen Sie die Gleichung der Leitkurve fiir das folgende Beispiel

, z 5)

Y :x2_1y7x2_1 fir 1<z<A4.

Fertigen Sie eine Zeichnung fiir das Richtungsfeld und die Leitkurve an, die die obige Be-
hauptung illustriert.

Aufgabe 229: lieare Differentialgleichung als exakte Differentialgleichung l6sen

Bestimmen Sie einen Eulerschen Multiplikator fiir eine lineare Differentialgleichung

Y + f(x)y = g(x)

und 16sen Sie die zugehorige exakte Differentialgleichung.

Aufgabe 230: Verhalten im Unendlichen

In der linearen Differentialgleichung
y' + fa)y = g(z)
seien die Funktionen f, g fiir > 0 definiert und stetig mit
f@)za>0, |g(x)] <M
mit festen Zahlen o, M . Zeigen Sie:

1. Fiir jede Losung der homogenen Differentialgleichung gilt lim,_, y(z) = 0.

2. Jede Losung der inhomogenen Differentialgleichung ist fiir > 0 beschrankt.




22.5 Theorie

Aufgabe 231: Autonome Differentialgleichung

Eine Differentialgleichung,

y' = fy)
bei der die rechte Seite nicht explizit von der unabhingigen Variablen z abhéngt, heifst
autonom.
Zeigen Sie:

1. Zu jeder Losung y(x) einer autonomen Differentialgleichungund jedem a € R ist
die in Richtung der z-Achse verschobene Funktion y,(x) := y(x + a) Losung dieser
Differentialgleichung.

2. Existiert
dy
fy)’

so kann man die Umkehrfunktion der Lésung bestimmen. Geben Sie diese an!

Aufgabe 232: Eindeutigkeitssatz von Nagumo

Es sei f: U — R in einer offenen Umgebung U von (zg,yp) € R? stetig und es gelte:

’f(may) - f($,g)| ’ ‘l’ - x()‘ < ’Z/ - g’ fiir alle (l’,y), (x7g) eU.

Zeigen Sie (Eindeutigkeitssatz von Nagumo): Es existiert hochstens eine Losung des An-

fangswertproblems
/

Yy :f(x7y)7 y(x()) = Yo

in einer Umgebung von x.

Aufgabe 233: Lipschitzbedingung auf Vertikalstreifen

Ist die Funktion f : R x R — R stetig und erfiillt sie auf jedem Vertikalstreifen [—a,a] x
R, a > 0 eine Lipschitzbedingung beziiglich y, wobei die Lipschitzkonstante von a abh&ngen
kann, so besitzt das Anfangswertproblem

Y = f(z,y), y(zo) =0 (20,90 €R)

genau eine auf ganz R definierte Losung.




Aufgabe 234: Monotonieprinzip

Es seien die Funktionen w = w(z), z = z(z) fur = € [a, b] stetig differenzierbar und w(a) =
z(a). Ferner sei f = f(z,y) fir « € [a,b],y € R definiert. w geniige der Differentialgleichung

w'(z) = f(z,w(x)), =x€la,b,
wéahrend z der Differentialungleichung
Z(x) > f(z,2(x)), =€ [a,b],

geniige. Zeigen Sie:
z(x) > w(z) fir =€ (a,b)].

Aufgabe 235: Polygonzugmethode

Es werde das Anfangswertproblem ¢y’ = f(z,y), y(0) = 0 mit der durch
_ .
fla,y) = yly| ™" +asin—

gegebenen stetigen Funktion f : R? — R betrachtet (fiir y = 0 werde y|y|~/* = 0 und
fir 2 = 0 werde zsinT = 0 gesetzt). Sei § = (n + %)_1, n € N und y, der zugehorige
Eulersche Polygonzug mit den Stiitzstellen x;, = kd. Beweisen Sie, dafs die Folge {yn }n>1
dieser Polygonziige in keinem Intervall der Form [0, a], a > 0 gleichméfig konvergiert.
Hinweis: Zeigen Sie durch Fallunterscheidung n gerade/ungerade und untere bzw. obere
Abschétzung, daf die Folge {y,(z)}n>1 fir kein x € (0,a9), ap > 0 hinreichend klein,
konvergiert.

Aufgabe 236: Sukzessive Approximation

1. Bestimmen Sie nach der Methode der sukzessiven Approximation die ersten vier N&-
herungen fiir die Losung des Anfangswertproblems:

V=y -4 y(0)= -3

2. Sind alle sukzessiven Approximationen Polynome und wenn ja, von welchem Grad?

3. Bestimmen Sie ein moglichst grofes Intervall um 0, in dem der Satz von Picard-
Lindeldf die gleichméfige Konvergenz der sukzessiven Approximationen garantiert.

4. In welchem Intervall existiert die exakte Losung? Lésst sich die exakte Losung in eine
Potenzreihe um 0 entwickeln? Wenn ja, dann vergleichen Sie die Ndherungen mit der
Potenzreihenentwicklung der exakten Losung.




Kapitel 23

n-ter Ordnung

23.1  Analytische Losungen

Aufgabe 237: Potenzreihenansatz

Suchen Sie fiir die Differentialgleichung y” + zy = 0 ein Fundamentalsystem von Losungen
in Gestalt von Potenzreihen und berechnen Sie dessen Wronskideterminate. Was lasst sich
iiber die Konvergenz der Reihen aussagen?

23.2 konstante Koeffizienten

Aufgabe 238: konjugiert komplexe Eigenwerte

Bestimmen Sie die allgemeine Losung der Differentialgleichung

y@ — 6y 4+ 179" — 28y + 20y = 0.

Aufgabe 239: allgemeine Losung und Anfangswertproblem

Bestimmen Sie die allgemeine Losung der Differentialgleichung

V' + 2y +y=1-2.

Losen Sie das zugehorige Anfangswertproblem mit y(0) = 4, 3/(0) = 1.

23.3 nichtkonstante Koeffizienten

Aufgabe 240: Eulersche Differentialgleichung

Lésen Sie die folgenden Eulerschen Differentialgleichungen:
3,1

a) 23y + xy —y = 32,
b) 2?y" — 7wy’ + 15y = x mit Anfangswerten y(1) = ¢/(1) = 0.
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Aufgabe 241: Eulersche Differentialgleichung

Zeigen Sie, dass sich eine sogenannte Fulersche Differentialgleichung

an®™y™ + ap_12" "D 4 4+ aqay’ 4 agy = 0

mit konstanten Koeffizienten ay, ..., a, im Intervall (0,00) durch die Substitution z = €'

in eine lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten fiir die
Funktion z = z(t) := y(x(t) tiberfiihren 14ft.

Aufgabe 242: Fundamentalsystem bei nichtkonstanten Koeffizienten

Finden Sie ein Fundamentalsystem von Losungen fiir die Differentialgleichung
(22 — 323)y" + 4y + 62y = 0.

Hinweis: Suchen Sie zunéchst Losungen in der Gestalt y = %!

Aufgabe 243: Fourierentwicklung

Bestimmen Sie die 27-periodische Losung der Differentialgleichung y” + 4y = g(z) mit

L fir 0<a<m
glx) =49 T
(@) 2—E fir m<ax<27.
™
Geben Sie Fourierreihenentwicklung der Liisung an und zeigen Sie deren gleichméfige und

absolute Konvergenz.

Aufgabe 244: Reduktion

Finden Sie ein Fundamentalsystem von Losungen fiir die Differentialgleichung
(22 — 323)y" + 4y + 62y = 0.

Hinweis: Suchen Sie zunéchst Losungen in der Gestalt y = !

Aufgabe 245: Reduktion

Finden Sie ein Fundamentalsystem von Losungen fiir die Differentialgleichung
xy’ + 2y — 2y =0.

Hinweis: Suchen Sie zunéchst Losungen in der Gestalt y(z) = z%e”!




Aufgabe 246: Partielle Integration

Losen Sie das Anfangswertproblem:

zy" +(y—1y =0, y(1)=0,y'(1)=-2.

Hinweis: Integrieren Sie die linke Seite iiber das Intervall [1, z] und formen Sie durchpartielle
Integration um; man erhéalt eine Differentialgleichung 1. Ordnung.

Aufgabe 247: Multiplikationstrick

Losen Sie das Anfangswertproblem

/
Hinweis: y'y” = 3 (y’Z) ey’ = (e¥)!

23.4 Theorie

Aufgabe 248: Differentialgleichungzu gegebenem Fundamentalsystem bestimmen

a) Unter welchen Voraussetzungen kann man zu gegebenen Funktionen y; = y;(x),
i = 1,...,n eine lineare homogene Differentialgleichung n-ter Ordnung bestimmen, fiir
die y1, ..., Yy, ein Fundamentalsystem bilden?

b) Diskutieren Sie die Frage von a) fiir das Beispiel

1
yl(w) = ;7 yQ(x) =, Z/S(x) = 1’2, x>0

und geben Sie gegebenenfalls eine Differentialgleichung an.

Aufgabe 249: Fortsetzbarkeit

Es werde die Differentialgleichungy” = g¢(y) betrachtet. Dabei geniige ¢ : R — R einer
Lipschitzbedingung und es gelte sg(s) < 0 fiir s # 0.

Zeigen Sie:
1. Jede Losung der Differentialgleichungist auf ganz R fortsetzbar.

2. Gilt fos g(t) dt — —oo fir s — +o00, so ist jede Losung periodisch.

Aufgabe 250: Hochstens eine Nullstelle

Sei y(x) eine nichttriviale Losung der Differentialgleichung y” + ¢(z)y = 0 im Intervall
[a,b] C R. Die Funktion ¢ sei stetig und negativ auf [a,b]. Zeigen Sie, dass y im Intervall
[a, b] hochstens eine Nullstelle hat.




Aufgabe 251: Polynomringeigenschaft von Differentialoperatoren

Jedem Polynom
P\) = ap\" +an 1 A" 4 ag

wird ein Differentialoperator P(D), D = d/dx mit konstanten Koeffizienten zugeordnet,
der auf Funktionen u = u(x) nach der Vorschrift

P(D)u = anD"u + apn_1D" u+ ... agu
wirkt. Zeigen Sie die Rechenregel aus der Vorlesung:

P(D)[Pa(D)u] = Po(D)[P1(D)u] = (PLP)(D)u.

Aufgabe 252: Spezielle Losung

Gegeben sei die inhomogene lineare Differentialgleichung n-ter Ordnung
(n) (n—1) _ ax
Y\ +an_1y +..Fay=f(z)e

mit konstanten Koeffizienten ar € R, € R und stetiger Funktion f : (a,b) — R. Das
zugehorige charakteristische Polynom sei P(\) = (A—a)", d. h. « ist n-fache Nullstelle von
P.

Zeigen Sie: ys(z) := u(z) e*”* ist genau dann eine spezielle Losung der inhomogen Gleichung,
wenn u(™ (z) = f(x) ist.

Aufgabe 253: Taylorscher Lehrsatz

Es seien eine stetige Funktion g = g(x) im Intervall (a,b),zo € (a,b) und yo,...,yn—1 € R
gegeben. Bestimmen Sie die Lésung des Anfangswertproblems

Yy =g(x), ylxo) = w0,y (x0) =1, ,y(n —1)(x0) = Yn_1.

Aufgabe 254: Unendlich viele Nullstellen

Zeigen Sie: Hat eine Losung y = y(z),z € [a,b] einer linearen homogenen Differentialglei-
chung n-ter Ordnung mit stetigen Koeffizienten im Intervall [a, b] unendlich viele Nullstellen,
so ist y(x) = 0 fiir alle = € [a, b].




Kapitel 24

Systeme

24.1 konstante Koeffizienten

Aufgabe 255: allgemeine Lésung

Bestimmen Sie die allgemeine Losung des folgenden inhomogenen linearen Differentialglei-
chungssystems fiir drei gesuchte Funktionen y; = y1(x), y2 = y2(x), y3 = y3(x):

y’l = y1 — 2ys + cosz,
y/Q = 2y; —y3 +sinz,
ys = 4y — 2y — us.

Aufgabe 256: allgemeine Losung bestimmen

Bestimmen Sie die allgemeine Losung des folgenden Differentialgleichungssystemserster
Ordnung fiir drei gesuchte Funktionen y; = y1(x), y2 = y2(x), y3 = y3(x)

Y 0 0 1 Y1 0
yé = 1 0 1 Y2 + —2x
s 8 -3 -1 Y3 2

Aufgabe 257: einfache und doppelte konjugiert komplexe Nullstellen

Man gebe reelle Fundmentalsysteme fiir die folgenden beiden Differentialgleichungssysteme

an.
1 1 -3 0 O 1
) 1y 1 -3 ) T b) iig . 3 1 0 0 T2
o - 3 1 ) .fg o 0 0 1 -3 I3
T4 0 0 3 1 T4
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Aufgabe 258: Fundmentalsystem

Bestimmen Sie ein Fundamentalsystem von Loésungen fiir das homogene Differentialglei-
chungssystem y' = Ay mit der (3 x 3)-Matrix

A=

— |0 —
N[O

|
—
W = N

Aufgabe 259: gemeinsame LGésungen

a) Zeigen Sie: Zwei lineare homogene Differentialgleichungen haben genau dann eine nicht-
triviale gemeinsame Losung, wenn der Grad des grofsten gemeinsamen Teilers ihrer charak-
teristischen Polynome > 1 ist.

b) Bestimmen Sie die gemeinsamen Losungen der Differentialgleichungen

y(5) — 3y(3) +2y = 0.

Aufgabe 260: geomerische VFH < algebraische VFH

Bestimmen Sie die linear unabhéngigen Losungen des folgenden Differentialgleichungssys-

e (%) 3 1 2 (%)
g | = -1 5 2 y(t)
2(t) 0 0 4 2(t)

Aufgabe 261: Kompartement-Modell 1

Ein Tank Kj enthalte 100 Liter Wasser, in dem 5 kg Salz aufgelost sind, ein Tank Ko
enthalte 300 Liter Wasser, in dem 5 kg Salz aufgelst sind. Beginnend mit der Zeit tg = 0
werden pro Minute stédndig 10 Liter Salzlosung von K7 nach Ko und 10 Liter von Ks nach
K7 gepumpt und sofort verrithrt. Wie grof ist der Salzgehalt m;(t) in K;,i = 1,2 zur Zeit
t > 0 7?7 Auf welchem Niveau stabilisiert sich schliefslich der Salzgehalt in K; ?

Aufgabe 262: nilpotente Koeffizientenmatrix

Es sei A eine nilpotente reelle (n x n)-Matrix, d.h. es gilt A' = 0 fiir ein [ € N.

Zeigen Sie:
Jede Funktion y; einer Losung y = (y1,...,yn) des Differentialgleichungssystem ¢y’ = Ay
ist ein Polynom vom Grad <[ — 1.




Aufgabe 263: Rang-1-Koeffizientenmatrix

Bestimmen Sie ein Fundamentalsystem fiir das Differentialgleichungssystem
n
yQ:Zajyj, i=1,...,n, aj=const.
J=1

Berechnen Sie die Determinante der zugehorigen Fundamentalmatrix.

Aufgabe 264: Schiefsymmetrische Koeffizientenmatrix

Zeigen Sie, dak eine reelle (n x n)-Matrix A genau dann schiefsymmetrisch ist (d.h. es gilt
A = —AT), wenn alle Losungen y = y(x) des homogenen Differentialgleichungssystems
y' = Ay einen konstanten (euklidischen) Betrag haben: y(x) "y(z) = const.

Aufgabe 265: Verhalten im Unendlichen

Berechnen Sie die allgemeine Losung des Differentialgleichungssystems

Y= Y2 +us,
Yy = Y1 +ys,
Y3 = Y1ty

Wie verhalten sich die Losungen fiir x — 4007

24.2 Matrixexponentialfunktion

Aufgabe 266: Anwendung der Rechenregeln

Berechnen Sie

exp

S O R
O Q=
Q = =
s
m
=

Aufgabe 267: Beispiele fiir die Matrixexponentialfunktion

Berechnen Sie die folgenden Werte der Matrizen-Exponentialfunktion:

3 2 T —y
exp(_1 1>, exp(y :1:) (z,y € R).




Aufgabe 268: Matrix-Exponentialfunktion

Berechne die folgenden Matrizen:

1.

¢ fir z€R und A:<a b>
0 a

mit beliebigen Parametern a,b € R.

2. ¢4 eB edeB eBed und At fiir

10 01
A_<O 0) und B-(O 0).

Aufgabe 269: Nilpotenz

Zeigen Sie: Ist A eine nilpotente, komplexe (n x n)-Matrix mit A1 =0, 1 € N, so gilt:

Aufgabe 270: Positive Matrizen

Beweisen Sie: Genau dann sind die Elemente von e*4 (A = (a;;) reelle (n x n)-Matrix) fiir
alle x > 0 nichtnegativ, wenn fiir die Elemente a;; von A gilt: a;; > 0 fiir i # j .
Hinweis: Fiir hinreichend grofes o € R sind die Elemente von A + oF alle > 0.

Aufgabe 271: Rechenregeln fiir die Matrixexponentialfunktion

Es seien A, B komplexe (n x n)-Matrizen mit AB = BA (d.h. die Matrizen sind vertausch-

bar). Zeige Sie die folgenden Rechenregeln fiir die Matrizen-Exponentialfunktion:

a) etel =eBed,

b) eAtB = oA eB,
Zusatzaufgabe: Geben Sie Gegenbeispiele zu a), b) an, falls die Bedingung der Vertausch-

barkeit verletzt ist.

Aufgabe 272: Umkehrfunktion zur Matrix-Exponentialfunktion

Bestimmen Sie eine komplexe (2 x 2)-Matrix C' mit




24.3 nichtkonstante Koeffizienten

Aufgabe 273: Zuriickfiihrung auf Gleichung 2. Ordnung

Es sei das lineare Differentialgleichungssystem
’ . 1 zt
Y'=A@)Y +b(z) mit A(x) = 9 2 |, 0b(x)= 3 (x >0)

fiir zwei gesuchte Funktionen Y = (y1,42)" gegeben. Bestimmen Sie die Losung mit den
Anfangswerten Y (2) = (1,4)T.

Aufgabe 274: konstante Differenz

Es sei das Differentialgleichungssystem

yizg_Q&—Fl, yé:&—2%+:p (x> 0)
x x x x
gegeben. Bestimmen Sie ein Fundamentalsystem von Losungen fiir das homogene System.

Losen Sie das Anfangswertproblem fiir das inhomogene System mit den Anfangswerten
yi(1) =1, y2(1) = 1.

Aufgabe 275: Lineares DGL-System und Matrix-Exponentialfunktion

Die Funktionen f = f(z),g = g(x) seien in einem Intervall [a, b] stetig. Bestimmen Sie ein
Fundamentalsystem fiir das folgende Differentialgleichungssystem:

v = @y —g(x)ye,
vy = g(@)y + f(z)ye.

Hinweis: Benutze die bereits an anderer Stelle bewiesene Beziehung

u U o3
u —v e CcCoOsv —e” Ssinv
A = — eA = w o u
v u e” sin v e CoS v

Aufgabe 276: Spezielle Losung

Bestimmen Sie eine spezielle Lésung des inhomogenen Differentialgleichungssystems

Yy = 2xys + cosx?,  yh = —2xy; — sinz’.







Kapitel 25

Trajektorien

Aufgabe 277: Trajektorien - Theorie und Beispiele

Orthogonale Trajektorien einer gegebenen ebenen Kurvenschar sind Kurven, die die ge-
gebene Schar in jedem Punkt senkrecht schneiden. So sind z. B. die Aquipotentiallinien
orthogonale Trajektorien zu den Feldlinien eines Kraftfeldes. Allgemeiner sind isogonale
Trajektorien Kurven, die die gegebene Schar unter einem festen Winkel « € [0; 7/2] schnei-
den; i. allg. gibt es jeweils zwei Scharen isogonaler Trajektorien zum Schnittwinkel a.

1. Bestimmen Sie eine Differentialgleichung fiir die orthgogonalen Trajektorien zu einer
Kurvenschar, die in der impliziten Form F(z,y,c) =0, ¢ € R gegeben ist.

2. Bestimmen Sie die isogonalen Trajektorien mit dem Schnittwinkel o zur Geradenschar
y=cz, ceR.

3. Bestimmen Sie die orthogonalen Trajectorien zur Ellipsenschar 22 + 2y% = ¢2, ¢ € R.
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Kapitel 26

Binomialkoeffizienten

Aufgabe 278: Primzahltest

Sein € N, n > 2. Zeigen Sie:

n ist Primzahl genau dann, wenn n Teiler von < ZL > ist firallez=1,...,n— 1.
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Kapitel 27

Lineare Gleichungssysteme

Aufgabe 279: vollsymetrisches System

Seien a, b, ¢ € Q mit a+ b+ c # 0. Zeigen Sie, dass das homogene lineare Gleichungssystem

ari + bxy + cxs =0
ary + bxs + cuxy =0

ars + bxry + cxs = 0

cxy 4+ axy 4+ bxzs = 0
bxr1 + cxo 4+ ax5; = 0

(1, x9, 3, x4, x5 Unbestimmte) nur die triviale Nullldsung besitzt.
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Kapitel 28

Matrizen

28.1 Eigenvwerte und -vektoren

Aufgabe 280: Diagonalisierbarkeit

Zeigen Sie, dass der durch Te; = 0, Tep = e,_1, (k = 2,...,n), gegebene Operator
T € L£(R") nicht diagonalisierbar ist.

Aufgabe 281: Transformation auf Diagonalgestalt

1. Finden Sie alle Eigenwerte und Eigenvektoren der Matrix

3 2
A=12 4
0 2

ot N O

2. Bestimmen Sie die Transformationsmatrix, die A in Diagonalgestalt tiberfiihrt.

Aufgabe 282: Eindeutigkeit der Inversen

Sei K ein Ring mit Einselement und sei A € K™", wobei m,n € NT. Zeigen Sie:
a) Wenn es Matrizen B,C € K™ gibt mit BA = E,, und AC = E,,, so folgt B =C.

b) Sei K ein Korper und sei A Koeffizientenmatrix eines linearen Gleichungssystems mit
Konstantentupel b € K™. Ist seine Losungsmenge L nicht leer und gilt m < n, so
sind zur Parameterdarstellung von L mindestens n — m Parameter erforderlich.

c) Sei K ein Korper. Wenn m # n, so gibt es keine B,C € K™™ mit BA = FE, und
AC = Ep,.

Bemerkung: Dies gilt auch, wenn K ein beliebiger kommutativer Ring mit Einselement ist.
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Kapitel 29

Vektorraume und Moduln

29.1 K(m,n)

Biuntermoduln von K “Aufgabe283:m.n

Sei K ein Koérper und seien m,n € N%t. Zeigen Sie, dass K™" nur die trivialen
(K™ K™™)-Biuntermoduln besitzt. Insbesondere besitzt R™"™ nur die trivialen zweiseiti-
gen Ideale.

29.2 Vektorraume

Aufgabe 284: Basen

1. Zeigen Sie, dass die Menge M = {1 +ax+a2 1+ :U} keine Basis fiir P? ist. Sodann
erginzen Sie M durch Hinzunahme einer der Potenzen 1,z oder 22 zu einer Basis fiir
P2,

2. Sei M = {1,953 —z,2®+ 1,z — 1} und U = span (M) die lineare Hiille von M im
Vektorraum P3. Wihlen Sie eine Basis fiir U aus M aus.

Aufgabe 285: Dimension

1. Man bestimme die Dimension des durch die Vektoren v; = (0,1,2),vy = (1,1, 1),
v3 = (1,0,1) aufgespannten Unterraumes U des R3.

2. Uy, Uy seien Unterrdume eines Vektorraumes V' endlicher Dimension, und es sei
dimU; + dim U > dim V' . Zeigen Sie, dass dann Uy N Uz # {0} gilt.
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Aufgabe 286: Vektorraum-Eigenschaften

Sei V ein Vektorraum iiber K, ( K ist R oder C).

1. Man beweise mit Hilfe der Vektorraumaxiome, dass fir alle v € V und a € K,

0-u=0, (-1)-u=—-u, -0 = 0.

2. Zeigen Sie, dass der Durchschnitt beliebig vieler Unterrdume von V wieder ein Un-
terraum von V ist.

3. Seien v1,v2,...,v, €V, a,b € K, a # 0 Zeigen Sie, dass

span {v1,ve, ... v, } = span{avy,ve,...,v,} = span {v; + bvg,va,...,vn}.

29.2.1 Lineare Abbildungen

Aufgabe 287: Abbildungsmatrix

Es sei B = {1,:13,:1:2} die kanonische Basis fiir den Vektorraum P2. Zeigen Sie, dass der
Ableitungsoperator D = % auf P? bzgl. B die Matrixdarstellung

Mp(D) =

o O O

1
0
0

o N O

hat.

Aufgabe 288: Basistransformation

Es seien durch A = {ej,e2} und B = {2e; + e2,2e3 — €1} zwei Basen auf R? und eine
lineare Abbildung L € £(R?) durch die Matrix

Mu(L) = @ i)

gegeben. Man berechne nacheinander S = M#'(1), S~! und Mp(L)..

Aufgabe 289: Kern und Abildungsmatrix

Sei T € L(P*, P?) gegeben durch
Tp(z) :=p"(x), (pe 774).
1. Man bestimme den Kern von 7T .

2. Seien A = {1,:6,:1:2,563,:1:4} und B = {1,3;,:1;2} die natiiurlichen Basen von P* bzw.
P2. Bestimmen Sie die Matrix von T bzgl. der Basen A und B.




Aufgabe 290: Surjektivitit und Injektivitit

Es seien V,W Vektorrdume der Dimension n,(n € N), und L : V — W eine lineare
Abbildung. Zeigen Sie:

L st bijektiv < L ist injektiv < L ist surjektiv.

Hinweis: Verwenden Sie die Dimensionsformel und beachten Sie, dass L injektiv ist genau
dann wenn Kern L = {0} ist.

Aufgabe 291: Lineare Abhangigkeit

Es ist zu untersuchen, welche der folgenden Teilmengen des Vektorraumes V linear unab-
héngig, welche linear abhéngig sind.

1. {1,e",e*},V =C(R).

2. {1,cosz, cos? z, cos(2z) } ,V = C(R).
3. {1,z |z|},V = C(R).

4. {1,z ]z|},V = C([0,00)).

Aufgabe 292: Linearkombinationen

Die nachstehend genannten Behauptungen beweise man bzw. widerlege man durch Angabe
eines Gegenbeispiels.

1. Ist {v1, ve,vs3,v4} ein linear abhéngiges Vektorsystem, so ist v4 eine Linearkombination
von {vy,v2,vs}.

2. Ist vy eine Linearkombination von {vi,ve,vs}, so ist {v1, v, v3,v4} ein linear abhén-
giges Vektorsystem.

29.2.2 Unterraume

Aufgabe 293: Unterraumkriterien

1. Seien ay,...,a, €E Rund U :={z € R" | aqz1 + ... + anx, = 0}. Zeigen Sie, dass U
ein Unterraum des R" ist.

2. Wann ist fiir zwei Unterrdume Uj, Us eines Vektorraumes V' iiber einem Korper K
auch U7 U Us ein Unterraum von V7?7




Aufgabe 294: Unterraumkriterien

1. Man priife, ob die Menge M derjenigen Vektoren des R", deren erste zwei Koordinaten
x1, x9 die Gleichung 521 — x9 = 2 erfiillen, ein Unterraum des R" ist.

Man untersuche, ob folgende Mengen von Polynomen Unterrdume von P bilden:
2. die Menge M aller Polynome, die fiir x = 3 verschwinden;

3. die Menge My aller Polynome p(z) mit p(1) = 2.




Teil VIII
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Kapitel 30

Flachen und Durchfluss

Aufgabe 295: Ellipsoid

Man berechne Volumen und Oberflache des Ellipsoids

2 2 2

_ 3 T Y L
Aufgabe 296: Fluss des Coulomb-Feldes
Berechnen Sie den Fluft eines CouLUMB-Feldes
1 «x
K(ﬁ):m? r=|z|| #0

durch die nach auen orientierte Oberfliche OG eines zuléssigen Bereiches G C R?, welcher
den Ursprung in seinem Inneren enthalt.

Aufgabe 297: Fluss durch Zylinderwand

Berechnen Sie den Fluss des Vektorfeldes w = (z,y, z) durch den Rand des Zylinders vom
Radius 1 und der Hohe 1, der symmetrisch zur z-Achse auf der (x,y)-Ebene steht.

Aufgabe 298: Kegelspitze

Berechnen Sie den Inhalt des Flachenstiickes
S C R? mit

S = {(z,y,2)|r = zcos? p, y = zsind ¢
mit 0 < 2<2,0<¢p <27}

Aufgabe 299: Schwerpunkt der oberen Halbsphire vom Radius R

Man berechne den Schwerpunkt der oberen Halbsphére § vom Radius R
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Aufgabe 300: Einander durchdringende Zylinder

1. Man bestimme denjenigen Teil der
Fliche des Zylinders 22 + 22 = a2, der
innerhalb des Zylinders z? + 3% = a?®
liegt!

2. Man bestimme die Durchflufimenge
durch die obere Fliache zum Fluf8

—

f= (07 0, 1)'

3. Man bestimme die Durchfluffmenge
durch die Gesamtflichen zum Fluf g =
(0,0, 2) (Quellen auf der (z,y)-Ebene)!

4. Man bestimme das Volumen des Ge-
bietes GG, das innerhalb beider Zylinder
liegt.




Kapitel 31

Flachenintegrale im R2

Aufgabe 301: Streifen im 1. Quadranten

I= // x y dxdy,
Q

wenn Q = {(z,y) ER* |2 >0,y >0,1<x+y<2}

Berchnen Sie das Integral
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Kapitel 32

Gaulsscher Satz im Raum

Aufgabe 302: Kugel - Zylinder z
Aus einer Kugel vom Radius 2R wird ein Zylinder vom B

.- a ~<
Radius R so herausgeschnitten, dass die Langsachse des T~ [~ ]
Zylinders durch den Kugelmittelpunkt geht. Man bestim- h J
me das Volumen des Restkorpers K mit den folgenden oR
Methoden: S/
R

1. klassische Geometrie

2. Volumenintegral

3. Satz von Gauft mit einem geeigneten Vektorfeld

4. Guldinsche Regel (Rotationskorper)
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Kapitel 33

Gaulsscher Satz in der Ebene

Aufgabe 303: Fliche der Kardioide

Berechnen Sie die von der Kardiode eingeschlossene
Flache und deren Umfang.

Die Kardioide (vgl. Bronstein Kap. 1.3.1.2) ist die
Epizykloide (Rollkurve) eines Kreises vom Radius a,
der um einen Kreis gleichen Radiusses reibungsfrei
gerollt wird, d. h. die Kurve, die ein fester Punkt
auf der Peripherie des rollenden Kreises in der Ebene
beschreibt.

Aufgabe 304: Das kartesiche Blatt

Berechnen Sie den Flécheninhalt des im ersten
Quadranten liegenden Teils des kartesischen Blat-
tes.

Hinweis: Das kartesische Blatt ist die Flache, die
von der Kurve

23+ 9 = 3axy
und der Geraden

rT+y=-—a

eingeschlossen wird.
Um eine Parametrisierung zu erhalten, versuchen
Sie den Ansatz y =tz.

149



Aufgabe 305: Flichenberechnung iiber Kurvenintegrale - die Sektorformel

1. Leiten Sie aus dem Gaufischen Satz in der
Ebene durch Angabe eines speziellen Vek-
torfeldes eine Formel her, um den Flachen-
inhalt iiber ein Kurvenintegral zu berech-
nen.

2. Berechnen Sie den Fliacheninhalt eines sek-
torférmigen Gebietes, d. h. eines Gebietes,
das durch zwei Strahlen aus dem Koordina-
tenursprung und einer Kurve r(¢) begrenzt

r(phi)

phi2

phil

wird, die den Abstand des Punktes vom Ur-
sprung innerhalb der beide Strahlen angibt.




Kapitel 34

Malise

34.1 messbare Mengen

Aufgabe 306: Messbare Mengen bilden Algebra

Sei p ein (dufkeres) Maf auf der Potenzmenge A = 2% einer Grundmenge X. Eine Menge
A € A heifst messbar gdw.

uw(B) = (BN A)+ u(B\A) firalle B e A.

Zeigen Sie:

1. 0 ist messbar.

2. Nullmengen sind messbar.

3. X ist messbar.

4. Ist A € A messbar, dann ist auch X\ A messbar.

5. Sind Aq, Ay € A messbar, dann ist auch D := A; N Ay messbar.

6. Sind A, As € A messbar, dann ist auch V := A; U Ay messbar.

Bemerkung: Aus den Punkten a), d) und e) folgt bereits, dass die messbaren Mengen eine
Algebra bilden.

Zusatzaufgabe: Zeige, dass die messbaren Mengen sogar eine o-Algebra bilden, d. h.:

Sind Aj, Ao, - - - € A messbar, dann sind auch

D:ﬁAn und V:fjAn
i=1 i=1

messbar.
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34.2 Nullmengen

Aufgabe 307: Fast alle in endlich vielen Mengen

Es sei p ein Maf auf einer o-Algebra A iiber X und {4, },>1, 4, € A eine Folge mefsbarer
Mengen mit > 7, p(A,) < +oo.

Zeigen Sie:

Fast alle x € X gehoren zu hochstens endlich vielen der Mengen A,,.




Kapitel 35

Prinzip des Cavalieri - Guldinsche Regel

Aufgabe 308: Cavalierie-Prinzip

Es sei B C R" Jordan-messbar und fiir z = (x1,...,2,) € B sei a < x, <b.
Q(zy) = {2’ e R | (/. z,) € B}

q(zn) = |Q(xn)|,y

Man zeige:

b
Bl = / o(en) dey.

Aufgabe 309: Inhalt eines Glases

Das Innere eines Glases soll die Form eines
Rotationsparaboloids z = x? 4+ y? haben.
Berechne das Volumen V und die Oberflache
O des Glasinneren

mittels

1. Guldinscher Regel,

2. Volumenberechnung durch Integration
im R3.

Welche Hohe h muss das Innere des Glases
haben, wenn es 0,5 Liter fassen soll.
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Aufgabe 310: Die n-dimensionale Einheitskugel

phi

dr = r dphi

Man bestimme Volumen und Oberflache der n-
dimensionalen Kugel vom Radius r mit Hilfe des
Prinzips von Cavalieri!

rho = r cos(phi)

Aufgabe 311: Volumen und Oberfliche des

Man berechne Volumen V und Oberflache O 10
des Torus

1. mit dem Cavalieri-Prinzip

2. direkt durch geeignete Koordinatendar-
stellung und Transformationsformel.




Kapitel 36

Volumenintegrale im R3

Aufgabe 312: Kugelkoordinaten

Man berechne das Volumen des Korpers, der be-
grenzt wird von der Fliche

(2% + v + 23?2 = axyz.

Aufgabe 313: Kegelhalbierung

Ein gerader Kreiskegel mit Grundkreis-
radius r und Hohe h wird durch einen
ebenen Schnitt im Winkel o zur Grund-
fldche in zwei volumengleiche Teile geteilt.
(v sei dabei natiirlich echt kleiner als
der Mantelwinkel des Kegels, so dass als
Schnittfliche eine Ellipse entsteht, de-
ren Rand ganz auf dem Kegelmantel liegt.)

Wie grof ist die Schnittfliche und in wel-
cher Hohe schneidet die Schnittebene die
Kegelachse?
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Aufgabe 314: Kugel mit Loch

In eine Kugel vom Radius r wird ein zylin-
drisches Loch vom Radius a so gebohrt, dass
die Zylinderachse durch den Kugekmittelpunkt
geht. Die Hohe des Loches betragt 1 m.

Wie grofs ist das Volumen des Restkorpers?




Teil IX

Mengen
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Kapitel 37

Kombinatorik

Aufgabe 315: Grundaufgaben der Kombinatorik

Esseien M = {1,...,m} und N = {1,...,n} mit natiirlichen Zahlen m,n. Bestimmen Sie
die Anzahl aller

1. eindeutigen Abbildungen f: M — N;

2. eindeutigen Abbildungen f: M — N mit f(1) < f(2) <--- < f(m);

3. eineindeutigen Abbildungen f: M — N;

4. eineindeutigen Abbildungen f: M — N mit f(1) < f(2) <--- < f(m).
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Kapitel 38

Machtigkeit

Aufgabe 316: Abziahlbarkeit von Teilmengen von N

Beweisen Sie: Die Menger aller endlichen Teilmengen von N ist abzdhlbar. Gilt das auch
fiir die Menge aller Teilmengen von N7
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Kapitel 39

Mengenbeziehungen

Aufgabe 317: Symmetrische Differenz

Fiir Mengen X,Y setzen wir X *Y := (X UY) \ (X NY) (symmetrische Differenz von X
und Y'). Zeigen Sie, dass fiir Mengen XY, Z gilt

1. X *xY =Y x X (Kommutativitdt)
2. X*x0=X
3. (X xY)xZ =X« (Y xZ) Assoziativitat)

und bestimmen Sie fiir eine Menge A alle Mengen B mit A x B = ().
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Kapitel 40

Supremum und Infimum

Aufgabe 318: Beschrianktheit von Mengen

Untersuchen Sie, ob die unter a) - c) definierten Mengen M reeller Zahlen nach oben
oder unten beschriankt sind. Wenn ja, dann bestimmen Sie gegebenfalls sup M und inf M.
Existieren dann auch max M oder min M?

_1)»
1. M::{xER|x:1—( n) ,nEN},

2. M:={zeR|[2°+22+2>5z <0},

1
3. M::{xeR\x:tth, 0<t§10,teR}.

Aufgabe 319: Supreum und Infimum von Mengenkombinationen

Es seien X, Y nichtleere, beschrankte Mengen reeller Zahlen und
X+Y: ={z+y|lzeX, yeY}, X - YV:={ay|lzeX, yeY}.
1. Beweisen Sie:
sup(X +Y) =sup X +sup?, inf(X +Y) =inf X +inf Y.
Gilt auch stets

sup(X -Y)=sup X -sup?, inf(X-Y)=inf X -inf Y?

2. Zeigen Sie:
sup(X UY) =max{sup X, supY'}, inf(X UY) = min {inf X, inf Y} .
Ist XNY #0, soist

sup(X NY) <min{sup X, supY}, max {inf X, inf YV} <inf(X NY).

Kann hierbei das Kleiner-Zeichen auftreten?
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Kapitel 41

Fehleranalyse

Aufgabe 320: differentielle Algorithmusanalyse

1. Bestimmen Sie die absolute und relative Problemkonditionszahl fiir die Funktion

OEES

T

2. Beurteilen Sie mit Hilfe der differentiellen (relativen) Stabilitdtsanalyse, welcher der

1 1

= ; > 1.
z+1 z(z+1) “

beiden moglichen Algorithmen der bessere ist.
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Kapitel 42

Fixpunktiteration

Aufgabe 321: Fixpunktiteration bei einer Funktion 3. Grades

1. Bestimmen Sie numerisch die Nullstellen des kubischen Polynoms P = P(x) mit

1 1

P(x) = Zx?’ —x+ 5
Schreiben Sie dazu die Gleichung P(z) = 0 in Fixpunktform um und iiberpriifen
Sie, ob im Intervall [0, 1] die Voraussetzungen des Fixpunktsatzes von Banach erfiillt
sind. Starten Sie die sukzessive Iterationsfolge mit zg = % und berechnen Sie sechs

Iterationen, d. h. x1, ..., xg.
2. Welche Fehlerabschétzungen liefern die a priori und a posteriori Abschétzungen?

3. Berechnen Sie die weiteren Nullstellen durch Abspaltung eines Linearfaktors und Lo-
sung einer quadratischen Gleichung. Wie lasst sich der Fehler der weiteren Nullstellen
abschétzen?
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Kapitel 43

Gauss-Algorithmus

Aufgabe 322: Beispiel zur Pivotisierung

Losen Sie das Gleichungssystem

10 -7 0 1 7
-3 2.099 6 2 | = 3.901
) -1 5 T3 6

in fiinfstelliger Dezimal-Gleitkomma-Arithmetik
e bei einem Rechner, der abschneidet

e bei einem Rechner, der rundet.

1. Verwenden Sie je einmal den Gaufs-Algorithmus ohne Pivotisierung, mit Spaltenpivo-
tisierung und mit Totalpivotisierung!

2. Vergleichen Sie die Ergebnisse mit der exakten Losung und erkldren Sie die Ursache
fiir auftretende Fehler!

3. Beurteilen Sie die Akzeptanz der Né&herungslosungen mit dem Satz von PRA-
GER/OETTLI!

4. Fiihren Sie gegebenenfalls eine Nachiteration durch!
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Kapitel 44

Integration

44.1 Gauss-Quadratur

Aufgabe 323: Ein Beispiel zur Gaufiquadratur mit 2 Stiitzstellen

Man bestimme in der Arithmetik Mg 5 die beste Quadraturformel iiber dem Intervall I =
[7, 2] und berechne damit
2m
/ sin(z) d.
™

Aufgabe 324: Ein Beispiel zur Gaufi-Quadratur mit 4 Stiitzstellen

Man bestimme in der Arithmetik Mg 5 die beste Quadraturformel iiber dem Intervall I =
[0, 7] und berechne damit
™
/ sin(z) dz.
0

175






Teil XI

Partielle Differentialgleichungen

177






Kapitel 45

erster Ordnung

45.1 Charakteristikenmethode

Aufgabe 325: Anfangswertproblem

Losen sie das Anfangswertproblem
1 2 - n
xVu + §|Vu| = wu(r) fir xeR"

1
u(z) = (- z|?)  fir 2xeS=R"'x{0}

Aufgabe 326: Charakteristisches System

Leiten Sie eine explizite Darstellungsformel fiir die Losung v = u(t, z) des folgenden An-
fangswertproblems her:

u+a-Vyu+bu = 0 in [0,00) x R"
u(0,-) = g¢g(-) inR"

Hierin sind ¢ € R™ und b € R konstant sowie g : R — R eine gegebene, stetig differenzier-
bare Funktion.
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Aufgabe 327: Charakteristikenmethode

Es seien £ C R? der abgeschlossene Einheitskreis, f eine beliebige, stetig differenzierbare
Funktion in E, sowie a € R, a > 0. Das Randwertproblem

—a(xuy +yuy) +u = f in E,
u = 0 auf OF

hat dann nach der Charakteristikenmethode eine stetig differenzierbare Losung u = u(z, y)
zumindest in E\(0,0).

1. Zeigen Sie, dass u beschriankt in E\(0,0) ist.
2. Léakt sich u stetig in den Nullpunkt fortsetzten?

3. Unter welchen Bedingungen an a kann u auch stetig differenzierbar in den Nullpunkt
fortgesetzt werden (und wird damit zu einer Losung des Randwertproblems in ganz

E)?

Aufgabe 328: Einhiillende

1. Essei u =u(-,a), a € A C R eine einparametrige Losungsschar der Differentialglei-
chung
F(-,u,Vu) =0.

Ferne existiere die Einhiillende z = w (z) der einparametrigen Flachenschar M, =
{(z,2) ER* xR | z =u(x,a),a € A} mit einer C*-Funktion w. Zeigen Sie, dass w
wieder eine Losung der Differentialgleichung ist. Die Einhiillende heifst dann auch
singuldres Integral der Differentialgleichung.

2. Bestimmen Sie das singulédre Integral der Differentialgleichung
u? (1 + \Vu]Q) =1

aus der Losungsschar

1

u(w,a):j:(l—\x—a\Q)E, |z —al < 1.




45.2  Erhaltungsgleichungen

Aufgabe 329: Burgers Gleichung

Konstruieren Sie eine schwache Losung fiir die Burgers Gleichung

1

U + 3 (uQ)m =0, (t,z) € (0,00) x R
mit den Anfangswerten
1 fir x <0,
u(0,2) =¢ 1—z fir 0<ax <1,
0 fir 1<uz.

Aufgabe 330: Randextremwerte

Sei u = u(x,y) eine stetig differenzierbare Losung der Differentialgleichung
(45.1) a(z,y)ug + b(z,y)uy = —u

im abgeschlossenen Einheitskreis B C R2. Es gelte ferner

(45.2) a(z,y)x +b(x,y)y >0  fiir alle (x,y) € 0B.

Beweisen Sie, daft u in B identisch verschwindet.

von u in den Randpunkten die Bedingung (2) an die Koeffizienten ausgenutzt wird.

Hinweis: Zeigen Sie maxp v < 0 und ming u > 0, wobei fiir die Untersuchung des Verhaltens







Kapitel 46

Multiindizes

Aufgabe 331: Polynomische Formel und verallgemeinerte geometrische Reihe

Beweisen Sie als Beispiele zur Anwendung der Multiindexschreibweise die folgenden beiden
Identitaten:

m! x®
m __
(46.1) (@1 +aoe+ .t = Y -
|a)l=m
(46.2) (1— (21 42+ + ))_1—ZM
. T X9 e Ip = ol

loe|>0

Fiir welche z1, ..., z, konvergiert die letzte Reihe absolut?
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Kapitel 47

Symbol und Klassifizierung

Aufgabe 332: Hauptsymbol

Es sei P(x,0) = ) <., 6a(x)0 ein linearer partieller Differentialoperator m-ter Ordnung
mit stetigen Koeffizienten, S, = Sp,(z,§) sein Hauptsymbol und ¢ = ¢(x) eine glatte
reellwertige Funktion. Zeigen Sie fiir |A\| — oo die asymptotische Entwicklung

e P(x,8)eN? = NS (2, By - - -y Gy ) + ONT)
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Kapitel 48

zwelter Ordnung

48.1 elliptische DGLs

48.1.1 Laplace-Operator

Aufgabe 333: Abschitzung harmonischer Funktionen

Beweisen Sie folgende Variante der Abschitzungen fiir die Ableitungen einer harmonischen
Funktion :
Ist u harmonisch in einem Gebiet G C R", dann gilt

o Ck
|0%u(wo)| < R lull 1 (s
fiir jede abgeschlossene Kugel B = B,(z¢) C G und jeden Multiindex a der Ordnung k.
Hierbei ist
fullisey = [ futa)l do
B

die Norm von u im Raum L'(B) und

1 2n+1 k?k
Co:=—, C:= (71@), k=1,2,---,
Tn Tn

wobei 7, das Volumen der Einheitskugel im R"™ bezeichnet.

Aufgabe 334: a-priori-Abschitzung

Es sei B die abgeschlossene Einheitskugel im R". Zeigen Sie die Existenz einer nur von n
abhéngigen Konstanten C', so dass

max |u(z)| < C (max lu
zeB x€0B

(@) + mae Au(o))

fiir jede Funktion u € C?(B) gilt.
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Aufgabe 335: Differenzenverfahren

In der Vorlesung wurde zum Anfangswertproblem
(48.1) ug+cuy, =0, u(0,2) = f(x)

mit ¢ € R, f € CY(R) das Differenzenverfahren iiber einem Gitter mit den Maschenweiten
h,k > 0 und

v(t+k,z) —v(te)  v(t,z+h)—v(t,x)
K e h

(48.2) =0, v(0,z) = f(x)

betrachtet. Zeigen Sie fiir ¢ < 0 die Konvergenz. Genauer: Die Differenz w = u — v zwi-
schen der exakten Losung und der Naherungslosung geht in allen Gitterpunkten aus einer
beschréinkten Menge des R% := {(t,z) € R?|t > 0} gleichmiRig mit h,k gegen Null falls
¢ <0,\:=k/h >0 fest bleibt und Ac <1 gilt.

Hinweis:Zeigen Sie zunéchst

lw(t + k,z)| < (1= Xd|) |w(t,z)| + Nc| |w(t,z + k)| + o(h).

Aufgabe 336: Eine spezielle Integraleigenschaft harmonischer Funktionen

Es sei w = u(x) harmonisch in einem Gebiet 2 C R". Ferner seien 0 < a < b < c¢ reelle
Zahlen mit ac = b? und x¢ € Q mit B.(zg) C Q.

Zeigen Sie, dass dann gilt:

/ u(zo + aw) u(xo + cw) dw:/ u*(xo + bw) dw.
|w]=1 |w]=1




Aufgabe 337: elliptische Koordinaten

1. Rechnen Sie den Laplace-Operator in der Ebene auf sogenannte elliptische Koordina-
ten um. Dazu werden Koordinaten (1, ¢) im R? eingefiihrt durch

x = ccoshn cosp, y = csinhn sinp, ¢ = const. > 0.

Welchen Kurven in der (x;y)-Ebene entsprechen den Linien n = const. bzw. ¢ =
const.?

2. Sei 1 = (21, z2) harmonisch und ) = 1/;(77; ¢) entstehe aus 1) durch Umrechnen auf
elliptische Koordinaten, d.h.

Y(x1, x2) = Y(ccoshn cos @, esinhn sing) = (7, @).
Welcher Gleichung geniigt dann ¢ ?

3. Es sei G ¢ R? die Ellipse

2 2
G::{(azl,xz)ERz z;+9b”§<1},a,b>o.

Bestimmen Sie unter Benutzung elliptischer Koordinaten eine Losung ¢ = ¥ (x1, x2)
des folgenden &ufseren Dirichletproblems:

Ay = 0 in RAG,
v = x1 auf OG,
Y] beschriinkt fiir |z| — co.

Aufgabe 338: Anwendung der Greenschen Formel

Es sei v in der punktierten Kugel Bgr(zg) := {z € R" | |xr — x| < R} harmonisch. Zeigen
Sie:

1. Fur r € (0, R) ist der Wert des Integrals

/ (x — xg) - Vu(x) do,
OB (x0)

|z — x|

unabhéngig von 7.

€ 4 dor™ ! falls n > 3,
/ u(y) doy = ¢ 27"
OBr(x0)

2. Esist

corlnr +dor  fallsn =2

mit Konstanten ¢y, dg. Welchen Wert hat ¢y?




Aufgabe 339: Greensche Funktion fiir den Halbraum

Bestimmen Sie die Greenschen Funktionen fiir das Dirichletproblem fiir den Halbraum
H={x=(z1,....,2,) € R" |2, > 0},

Aufgabe 340: Grennsche Funktion fiir die Halbkugel

Bestimmen Sie die Greenschen Funktionen fiir das Dirichletproblem fiir die Halbkugel Kr =
{z = (z1,...,20) € R" ||z| < R, z, > 0}.

Hinweise: Machen Sie analog zum Vorgehen bei der Berechnung der Greenschen Funktion
fiir die Kugel jeweils geeignete Ansétze mittels des Spieglungsprinzips.

Aufgabe 341: Grundlésungsmethode fiir die Poisson-Gleichung im R3

Wir betrachten im R3 die Poisson-Gleichung

—Au(z) = f(x)

1 i 2] < 1,

sonst

Bestimmen Sie mit der Fundamentallésungsmethode eine Losung.

Aufgabe 342: Hintereinanderausfiihrung und subharmonische Funktionen

1. Es seien B eine reelle (n x n)-Matrix, ¢ € R, @ : R" — R" mit Q(z) = Bz + ¢ und
u € C%(R"). Zeigen Sie
A(uoQ) = (Lou) o Q,
wobei
Ly = ik ~ A~
0 Z @ik axlal‘k
i,k=1
ist und die a;;, die Elemente der Matrix A := BB sind. Insbesondere ist also A(u o

Q) = (Au) o @), wenn B eine orthogonale Matrix ist.

2. Sei ¢ : R — R eine glatte und konvexe Funktion. Ferner sei u harmonisch in ei-
nem Gebiet G C R". Zeigen Sie: Die Funktionen v := ¢ o u und w := |Vu|? sind
subharmonisch. in G




Aufgabe 343: Integralabschitzung

Sei G C R™ein beschranktes Gebiet, fiir das der Gaufssche Satz gilt.
Es sei u € C%(G) eine reelle Funktion mit u = 0 auf 9G.
Dann gilt fiir jedes ¢ > 0:

5 /G Vu(e)Pds < e /G (Au(w))Qda:—l—% /G () d

Aufgabe 344: Kugelpotential

Es sei V(x) das Newtonsche Volumenpotential einer offenen Kugel Br € R® vom Radius
R > 0 um den Nullpunkt mit der Dichte p(z) = |x|? (|z| bezeichnet die euklidische Norm
von x € R?) im Aufpunkt x, d.h.

v = [[f,

1. Berechnen Sie V'(z) fiir alle z € R? .

2. Fiir welche 2 € R? ist V = V() zweimal stetig differenzierbar?

3. Bestétigen Sie durch direktes Nachrechnen mittels a)

AV =0 in R3\Bp, AV = —4rxlz|*> in Bp

Aufgabe 345: Maximumprinzip

Es sei Q2 C R"™ ein beschrinktes, nichtleeres Gebiet.

1. Seiu e C?(Q)NC(Q) , g := u|opg und —Au(z) +u(z)a(r) = 0 (x) fiir * € Q mit einer
positiven Funkion a. Zeigen Sie fiir x € €Q:

(xx) min {0, min g} < u(x) < max {0, max g}
2. Machen Sie sich mir Hilfe der gewohnlichen Differentialgleichung —u” + u = 0 klar,
dass man in a) nicht ming < u(x) < max g erwarten darf.

3. Sei u in Q eine harmonische Funktion, deren Gradient stetig auf Q fortsetzbar ist.
Zeigen Sie, dass mindestens eine Maximalstelle von |Vu|? auf 99 liegt.




Aufgabe 346: Minimumprinzip

Es sei 2 C R" ein beschrinktes, nichtleeres Gebiet, T C Q und Q \ T sei offen.
Ferner sei u : Q \ T'— R eine Funktion mit den folgenden drei Eigenschaften:

(1) w ist harmonisch in Q\ T
(2) Fiir alle g € 02\ T gilt u(xz) — 0, wenn z in Q \ T' gegen z¢ strebt.
(3) Es gibt eine harmonische Funktion w : Q\ 7' — (0, 00) so, dass fiir alle £ € T gilt:
|u(z)|/w(z) — 0, wenn x in Q\ T" gegen & strebt.

Zeigen Sie, dass dann u = 0 in Q\ 7T ist.

Aufgabe 347: Neumann-Funktion

1. Die Neumannsche Funktion N = N(z,y) fiir ein Gebiet Q@ C R"™ wird definiert wie
die Greensche Funktion fiir das Dirichlet-Problem mit dem Unterschied, dass die
Bedingung G(z,y) = 0 fiir x € 0Q,y € Q ersetzt wird durch %—]X(x,y) = const. fur
x € 09,y € Q. Formulieren und beweisen Sie mit Hilfe der 2. Greenschen Formel
eine Darstellung fiir die Losung des Neumann-Problems mit Hilfe der Neumannschen
Funktion. Inwieweit ist die Konstante bestimmt?

2. Losen Sie das Neumann-Problem fiir eine Kugel im R3. Gegeben ist eine Funktion
h: 9BRr(0) — R mit faBT.(O) h(z)do, = 0. Gesucht ist eine Darstellung (z. B. mittels
a)) der Losung u = u(x) von

Au = 0 in Bg(0)

0 .
872 = h in 0Bg(0).

Aufgabe 348: Separation fiir EW-Problem

Bestimmen Sie durch Separation der Variablen die Eigenwerte und Eigenfunktionen des
Rand-Eigenwertproblems im Rechteck R := [0,a] x [0,b] C R, a,b > 0:

Au = —du in R
v = 0 auf IR




Aufgabe 349: Separationsansatz im Kreis

Wir betrachten das Randwert-Problem fiir die Laplace-Gleichung (Dirichlet—Problem) in
einem Gebiet Q des R? fiir eine Funktion f € C(95),

(P) u € C(Q)NC*N),
Au = Ugy +Uyy =0 in Q,
u = f auf 0.

Losen Sie (P) in der Einheitskreisscheibe By := {x : ||x|| < 1} fiir die folgenden Randver-
teilungen:  (a) fi(z,y) =1,  (b) falz,y) =2".

Aufgabe 350: Temperaturverteilung auf Kugelschale

Eine sphérische Schale mit dem inneren Radius 1 und dem &ufseren Radius 2 habe eine
stationédre (d. h. zeitunabhingige) Temperaturverteilung. Die innere Randflache werde auf
einer Temperatur von 100°C gehalten, auf dem &uferen Rand gelte % = v, wobei n die

dufsere Normale und v < 0 konstant ist.
1. Bestimmen Sie die Temperaturverteilung in der Schale.

2. Kann v so gewahlt werden, dass die Temperatur auf dem duferen Rand 20°C betragt?

48.2 hyperbolische DGLs

48.2.1 Wellengleichung

Aufgabe 351: Eingespannte Saite

Eine homogene, an x = 0,2 = [ eingespannte Saite (quadr. Parabel)
Saite habe zum Zeitpunkt ¢ = 0 die Form einer b || == gy e

Parabel, die bzgl. der in z = L erreichten Senk- // 1 \\
rechten symmetrisch die Hohe h hat. Suchen die / . ut0=0 E u(t,)=0 %
Auslenkung v = wu(t,z) eines Punktes der Sai- / i \\ ”
te von der geradlinigen Gleichgewichtslage unter 0 /2 | x

der Voraussetzung, dass die Anfangsgeschwindig-
keit = 0 ist.




Aufgabe 352: Parallelogrammbedingung

Bestimmen Sie die Losung v = u(t, ) des charakteristischen Anfangswertproblems fiir die
eindimensionale Wellengleichung

(48.3) Ugt — @2y = 0.
Genauer: Auf zwei sich schneidenden Charakteristiken
r+at=a, r—at=74
seien die Werte der gesuchten Funktion u vorgegeben:
u(t,a —at) = f(t), u(t,B+ at) = g(t)

mit zweimal stetig differenzierbaren Funktionen f, g, so dass im Schnittpunkt der Charak-
teristiken die Werte iibereinstimmen.

1. Bestimmen Sie die Lésung u in Abh&ngigkeit von den Funktionen f und g.

2. Bestétigen Sie fiir v die Formel
u(to, .%'0) + u(tl, .%'1) = u(tQ, .%'2) + u(tg, .%'3)

fiir jedes ,charakteristische Parallelogramm®, d. h. (¢o, zo), (t1, z1) und (t2, x2), (t3, x3)
sind gegeniiberliegende Eckpunkte in einem Parallelogramm, dessen Seiten auf Cha-
rakteristiken der Wellengleichung liegen.

3. Zeigen Sie umgekehrt, dass jede dreimal stetig differenzierbare Funktion u = u(t, ),
die die Eigenschaft b) fiir alle charakteristischen Parallelogramme besitzt, eine Losung
der Wellengleichung ist.

Aufgabe 353: Kugelkoordinaten

Rechnen Sie die Differentialoperatoren
Lu = tgy + Uyy + sz + c(Uzy + Uzz +uy2), ¢ =const. € R

(x,y, z kartesische Koordinaten im R3) auf rdumliche Polarkoordinaten (Kugelkoordinaten)

um.

48.3 parabolische DGLs

Aufgabe 354: Separationsansatz

Gesucht ist u = u (t,x), so dass
t-up = Ugpy + 2u

unter der Randbedingung
w(t,0) =wu(t,m)




48.3.1 Warmeleitungsgleichung

Aufgabe 355: Losung der Warmeleitungsgleichung im 1. Quadranten

Sei g : [0,00) — R mit g(0) = 0. Zeigen Sie, dass

2

x t 1 __a®
u(x,t) = e 4t-9) g(s)ds, x>0,t>0
@)= | e et

eine Losung des folgenden Rand/Anfangswertproblems fiir die Warmeleitungsgleichung

U — Ugy =0 in (0,00) x (0,00),
u(z,0) = 0 fiirz>0,
u(0,t) =g(t) firt>0
liefert. Welche Regularitét fiir g ist ausreichend?

Hinweis: Betrachten Sie v(z,t) = wu(z,t) — g(t) und setzten Sie v fiir negative x-Werte
geeignet fort.

Aufgabe 356: spezielle Losung der Warmeleitungsgleichung

Sei v = v(2),z > 0 eine reelle Funktion einer reellen Variablen z und u = u(z,t) = v(%)

T
fir z € R, > 0.

1. Zeigen Sie: u geniigt genau dann der eindimensionalen Warmeleitungsgleichung
Ut = Ugz,

wenn
420" (2) + (2+ 2)v'(2) = 0,2 > 0.
2. Zeigen Sie, dafs die allgemeine Losung der letzten Gleichung fiir v gegeben wird durch
z
1 1
v(z) = c*/ e 1°xs 2ds+d
0

mit Konstanten c, d.
3. Differenzieren Sie v(”";) nach x und bestimmen Sie die Konstante ¢ so, daf der War-

meleitungskern im R! entsteht.
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Kapitel 49

Abgeschlossene Mengen

Aufgabe 357: Abschluss als Durchschnitt abgeschlossener Mengen

Beweisen Sie den folgenden Satz: B
Fiir jede Teilmenge A C M eines metrischen Raumes (M, d) ist der Abschluss A (gleich A
vereinigt mit der Menge der Randpunkte) darstellbar als

A= ﬂ B, wobei A= {B|ACBC M,B abgeschlossen},
Be

d.h. A ist die kleinste A umfassende und abgeschlossene Menge in M.
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Kapitel 50

Haufungspunkte

Aufgabe 358: Stammbruchsumme

1 1
M:{x€R|m:—+ﬁn,m€N}.
m  n

1. Zeigen Sie, dass M weder offen noch abgeschlossen ist.

2. Bestimmen Sie alle Hiufungspunkte von M.

Hierbei wird R als normierter Raum mit dem absoluten Betrag als Norm betrachtet.
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Kapitel 51

kompakte Mengen

Aufgabe 359: Durchschnitt kompakter Mengen

Es seien (M,d) ein metrischer Raum und K,, C M, n € N kompakte Teilmengen von M
mit (o2, K, = 0.

1. Beweisen Sie, dass dann unter den Mengen K,, n € N auch endlich viele Mengen
Ky, ..., Ky, existieren mit

Ky NK,n---NK,, =0.

m

2. Gilt die entsprechende Aussage auch, wenn nur die Abgeschlossenheit und Beschréankt-
heit der Mengen K, vorausgesetzt wird?
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Kapitel 52

Offene Mengen

Aufgabe 360: Durchnitt mit offenen Mengen

1. Es sei A eine offene Menge in einem metrischen Raum M. Zeigen Sie, dass fiir jede
Teilmenge B von M die Beziechung AN B C AN B gilt.

2. Geben Sie ein Beispiel zweier Intervalle A, B auf der reellen Zahlengeraden an, fiir
die die Menge A N B nicht in der Menge A N B enthalten ist.

3. Geben Sie auf der reellen Zahlengeraden Beispiele offener Mengen A, B an, so dass
die vier Mengen AN B, AN B, AN B und AN B séimtlich voneinander verschieden
sind.

205






Kapitel 53

Stetigkeit

Aufgabe 361: Stetigkeit und Topologie

Seien X und Y metrische Rdume und f : X — Y eine stetige Abbildung.

1. Geben Sie wenigstens drei mdégliche Definitionen von Stetigkeit an und beweisen Sie
deren Aquivalenz.

2. Beurteilen Sie den Wahrheitswert folgender Aussagen, indem Sie diese beweisen oder
ein Gegenbeispiel angeben.

Die Bilder beschrinkter Mengen unter f sind wieder beschréankt.

Die Urbilder beschrénkter Mengen unter f sind wieder beschrénkt.

Die Bilder offener Mengen unter f sind wieder offen.

)
)
)
iv) Die Urbilder offener Mengen unter f sind wieder offen.
) Die Bilder abgeschlossener Mengen unter f sind wieder abgeschlossen.
) Die Urbilder abgeschlossener Mengen unter f sind wieder abgeschlossen.
) Die Bilder kompakter Mengen unter f sind wieder kompakt.
)

Die Urbilder kompakter Mengen unter f sind wieder kompakt.

3. Wie édndern sich die Aussagen, wenn X und Y normierte Vektorrdume sind und f
auch noch linear ist?
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Kapitel 54

Zusammenhang

Aufgabe 362: Beispiel fiir einen nicht zusammenhingenden topologischen Raum

Definition: Ein topologischer Raum (X, 7) heift zusammenhingend genau dann, wenn
keine offenen, disjunkten, nichtleeren Mengen U,V € 7 mit X = U UV existieren.

(X, 7) heifst bogenzusammenhingend genau dann, wenn fiir alle z,y € X eine stetige Ab-
bildung w : [a,b] C R — X mit w(a) = z,w(b) = y existiert. w heikt Weg von x nach
Y.

A C X heifst zusammenhéngend (bogenzusammenhéngend) genau dann, wenn (A, 74) zu-
sammenhéngend (bogenzusammenhéngend) ist. D. h. A C X ist zusammenhéngend, genau
dann wenn es keine offenen Mengen U,V C X gibt, so dass

e ACUUYV,
e AN(UNV) =0,
e ANU #0, ANV #0.

1. Sei R? mit der Standardtopologie versehen. Betrachten Sie den Teilraum
1
X = A{(w,y) €R? |z >0,y =0} U{(z,y) ER* |2 >0,y = —}

versehen mit der Relativtopologie. Ist X zusammenhéngend? Ist X wegzusammen-
héngend?

2. Zeigen Sie, dass die zusammenhéngenden Mengen von R gerade die Intervalle sind.
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